CHAPTER 6

SCALING

With the convention adopted for SILLIAC (see Chapter 2),
only numbers which lie in the range -1 % x 1 can be held
in the registers, Since most problems require numbers out-
side this range, some scaling process is usually needed to
fit a problem to the machine, It is necessary that each

number at every stage of a caleculation lie within the

capacity of the machine, The organization requlred TO
assure this is sometimes trivial, but in many instances

ﬂ

it 1is the very essence of

the problemn,

6,1 SCALING BY SHIFTING, Although the number 2 lies
outside the range of SILLIAC numbers, we can multiply and
divide numbers by powers of 2 by shifting. Thus the left?
shift order 00 10F will cause (AQ) to be multiplied by
210 _ 4024, sSimilarly, the right shift order 10 9F will
divide AQ by 29 = 512, A knowledge of the use of the shiit
orders is essential to an understanding of scaling.

§

6,2 NUMBERS WITH THE BINARY POINT SHIFTED., Let us
consider the problem of computing with numbers in which the
binary point has been moved 10 places to the right of 1ts
SILLIAC position. We are then dealing with numbers in the
range -1024 £y € 1024 = 2_29. Let such a number, when in
location m, be designated by N1O(mJ. Then we have
N, (m) = 2'%(m).

We can formulate rules for doing arithmetic with the

numbers N,,, Addition and subtraction are simple, If
(q) = (m) + (n), then

> 19(q) = 219%(m) + 219%m)

and

o1

N1o(Q) = N1o() + N10(n)-

Thus, the SILLIAC addition rules hold,
Multiplication requires a shift to the left of 10
places, We want '

N1o(Q) =N1o(m) X N1O(n)'

Thus, we require 21O(q) to represent the product of 21O(mJ,

and 21O(n). This requirement is satisfied if

bl

(@) = 2" {(m) x] .

‘.h_

We may consider several simple routines to carry out
the multiplication, The method given by (b) is probably
the best,

() The shortest method merely multiplies and shifts.
Notice that a 75 order must be used rather than a 74 order
because the least significant digit of N1O(p) is now 2-°7
and not 2757, A bias of =270 is introduced by the absence

of a roundoff. The program is given in Table 6.1.
(b) This method rounds off by adding 2"'3 to N1O(P)’

giving an unbiased result. The program is given in Table
6,2,

50 mF (m) to Q

75 nF (m) x (n) to AQ
00 10F 2'9%m) x (n)

40 pF to p.

Table 6,1
Multiplication with Binary Point Shifted

O=2

19 10F to A
50 nF (n) to Q
74 mF (m) x (n) + =50 to AQ

00 10F 2'%m) x (n) + 2740 40 4
40 pkF to p.

Table 6.2
Unbiased Multiplication with

Binary Point Shifted

(¢) A roundoff similar to that of division (i.e. in which
the last digit is forced equal to 1) is obtained with the
program given in Table 6.3,

+ 50 mF (m) to Q
75 nF (m) x (n) to AQ
00 QF 29(m) x (n) to AQ
50 tF Qq = 1
00 1F This makes 2757 A = 1;
(1) = 2'%m) x (n)
40 ¥ top.
Table 6,3

Division-Type Roundoff in Multiplication
with Binary Point Shifted

In Table 6.3 the order 50 +F is used simply because the
word at location t has a 1 in the appropriate position,

In division we also need an extra shift to restore
the quotient to the proper range. But here the shift
precedes the divide order and no special arrangements for
roundoff are necessary. We want

Hence we wish 210(q) to represent (m)/(n). The operation
which gives this representation is:

(q) = 27'%m)/(n),

the shift being carried out before the division,

The following program in Table 6.4 will carry out the
required operations: '

L5 mF (m) to A
10 10F 2~ 19(m)

66 nF 27 19%m)/(n)
NO pF top.

Table 6,4
Division with Binary Point Shifted

1t can be noted that by using such relations as

10 = 2 x 10P/2"

where 10F € 2% we can use decimal sceling although 1t will
be slower and clumsier to handle because of the factors
10P/2%, Decimal scaling however, has the decided advantage
that any print-out done with standard routines will be
easier to interpret than 1f binary scaling were to be used.

6.3 SCALING A FULL PROBLEM. There are conceptually

two ways in which we can approach the scaling of a problem;
both give the same program,

(a) We can alter the problem using such sub-
stitutions as x' = 100x or p' = 32p, so
that the modifled problem has all its

variables less than one but retaining full
significance,

(b) We can use scaled numbers inside the machine

-

to represent the variables, Thus, we can
use x/1000 instead of x and p/32 instead of p.

The final result must be such that the variables lie
within machine range and retain sufficlant accuracy.
Constants greater than one can be represented by numbers

less than one in conjunction with scaling factors, For
example, multiplication by 5,63 can be done by multiplylng
by 5.63/8 and shifting left 3 places,

Let us consider the following simple problem:

Example 1, Program the SILLIAC to compute the quantities

X
C

Y = 1 4+ x

at intervals of 0,01 from x = 0 to x = 0,

We note that we must scale x., Since the largest value
of x is 6, let us use x/8 inside the computer because this
will minimize the loss of significant figures.

What scaling factor is needed for y? A rough estimate
shows that y does not exceed e6/(1 + 36)~ 11, so that we
shall compute and store y/16,

Library Routine S52, the exponential routine, will give

valid results only if x is negative, We therefore write

e}c/8 - e X 1 x/8
so that
o (ex/8)8.
Now -
v/16 = S " ""“_"1““2_“" ’
16 < 64 ~ 1/64 + x°/64
- - %
and e (7 -1 + x/8 2 p)
m—_(‘(e }&6/4) X 2 x2) ¢

—-— el

We shall store the constants e/4 and 1/16., Each part of the

6-5

computation is within machine ceapacity. We proceed as
follows: '

(a) Square x/8 and add 1/64,

(b) call the result R and store it,

(c) evaluate 6_1 + x/8
(d) multiply by e/4 and square,
(e) double and square, '
(f) double and square again. -Call the result P,

(g) form.y/16 by dividing P by R.

with Library Routine 52,

Accuracy in the Result, Let us now consider how much
accuracy we obtain, If x/8 is near unity, numbers remain
large during the calculation and we do not lose significance
by subtracting nearly equal numbers or by other ill-
conditioning, .

However, when x/8 is small we notice that we form
ex/(16 X 64) quite accurately and then divide by R~~~ 1/64
which 1s about equivalent to a left shift of 6 places and
loses 6 binary digits on the right., We can prevent this if
we perform the division while the double~length P is in AQ,

Accuracy in the Argument. We should also consider the
accuracy of the argument x/8, It can be formed either by
successively adding the increment 0,01/8 = 0,00125 or by
counting and multiplying. The adding method is not so Z004
because the quantity 0.00125 will not be stored exactly and
the accumulated roundoff error obtained by the time x is 6
(which required 600 additions) may be troublesome,

The counting method avoids this trouble., Any x/8 is
n x 0,01/8, Hence we have

x/8 =n 0.01/8
= (n 2_39) 0.64 530 ,

-39

If we store 0,64 and count to get n x 2 °7, we can use the

6=6

following set of orders to get x/8 (where we have used
arguments in place of addresses): '

50 n x 2-39

5 0.64
00 30
40 x/8

The program for the entire calculation of y/16 is given
in Table 6.5 on page 6~-8 where we have again used arguments
instead of addresses,

Example 2: Solve the pair of simultaneous equations

ax + by + ¢ = O
dx + ey + £ = O

where the coefficients are in absolute values less than

1/2 and where the answers are known to lie within machine

range, Retaln as much accuracy as is reasonably possible,
We can distingulish two cases:

(a) If |a]>|d|, then
dc/a - T
y = - bdéa - e !

x = - CHbY

(b) If {d]| >|a|, then

y = %“5"52?6'

x:__f%@_x

In this program we shall follow the conventions of the
Decimal Order Input (see Chapter 5)., Notice that divisions

ORDER

F5
40

15
00

50
73
L4
40
L5
L4

26
40

ARGUMENT
n x 2737
(n+1) X =39
(n+1) x 2727
. 04 -
30

x/ 8

x/ 8

x/ 8

1/64

1/64 + x2/64
x/8

-1

to o2
~1 o+ x/8

Calculation of e /(1 + xz)

Table 6.5

CRDER

50
1d
40
50
5
00
40
50
75
00
4.0
50
15
66
NO

ARGUMENT

1/64 + x2/64
y/16

are always made using a full 78 digit dividend +to

retaln as much accuracy as possible, The program treats
the two cases (a) and (b) separately, distinguishing
with the 36 order at 1L, Location O in the
memory are used as temporary storage., The program 1S
given in Table 6,6 on pages 6-11 and 6-12,

6.4 ADJUSTABLE SCALING FACTORS. It is not
always possible to arrange a program so that a single
scaling factor can be used throughout the calculation,
Then it 1s necessary to make tests at appropriate places
to discover when variables are becoming too large or 100
small and to make proper adjustments in the scaling
factors. For many problems it is advantageous to have
the variable less than 1/2, Then two numbers can be
added or multiplied without exceeding capacity. By
using the LL n order we place 1/2 + [(n)]| in A, Hence
A is positive if | (n)| ¢ 1/2 and A is negative if
l {n)\é 1/2.,

6.5 CONTINUOUS SCALING, FLOATING POINT ROUTINES.

For calculations in which continual tests are required
to maintain accuracy floating point routines (see also
Section 4,7) may be used, These routines represent
numbers as y = a X 10b and store a and b, Thus they can
represent accurately the numbers in some large range
such as, for example, 10754 < [yl Z 1064 where y has 30

significant binary digits. There are three such routines
in the Program Library. The first, Library Routine AT

1s as described above, The second, Library Routine A4

1s a multiple precision floating point program in which
numbers lie in the range 107 73 |y|¢ 10'°3 with y having

6-9

20 significant decimal places, The third floating
point scheme, embodied in Library Routine A7, 1s
designed so that it provides many facilities provided
by A1, but 1s somewhat faster, With this routine, 1t
is somewhat easier to carry out instructions in normal
machine code than with A1, andits use is recommended 1in
cases where a balance must be struck between the ease
of coding and speed of final operation,

Floating point routines are slow because
numbers are scaled at each step of the calculation,.
Certain conveniences have been programmed in, however,
and these to some extent compensate for the extra time
required and also simplify the programming,

For small ad hoc calculations, A1l has been
combined with a number of convenient auxiliary routines
a8 Library Routine Ag, This simplified coding scheme,
which is described in Chapter 11, is very easy to learn,
and can be used for small arithmetical calculations by
users with no knowledge of the basic SILLIAC code,

6-10

0 L7 21L la] - {a]

L2 2414
1 32 12L
50 261 | & | <;\d\; f to Q
2 5 210 -
66 241 fa/d
3 -1 F
L4 23L
4 40 F ~-fa/d + ¢ to O
50 21L
5 15 25L
66 24L ae/d
6 =1 F
L4 271L
7 40 1F -2e/d + b to 1
L5 F
8 66 1F (-fa/d + ¢)/(-ae/d + b)
' = =y
-1 F
9 40 238L y to 29L
50 28L
10 75 25L
L4 26L (ey +)
11 66 24L -(ey + T)/d = x
NO 27L x to 28L
12 OF F Waste Order
50 22L lal > |al; b to Q
13 75 24L
66 21L bd/a
cont..
Teble 6.6

Solution of Two Simultaneous Eguatlions

o~11

14

15

16

1

18

19

20

2
22

24
25
20
2T
23

LO
40
20
15
00

L4
06
NO
15
L4
06

25L

241
23L
211

261

281
221
23L
211
17 L

bd/a ~ e to O

de /a,

(-dec/a + £ vd/a - e)

y to 29L
by
(by +c)/a = =X

Coutrol to 11L

(3D

< X OO O 0 O

Table 6.6 (continuea)

Solution of Two Simultaneous

Equations

|}

CHAPTER 7
MACHINE METHODS AND CODING TRICKS

There are usually a number of special techniques which
can be used on any particular digital computer and which will
simplify programming. Some of these techniques are
applicable on many different computers, but usually, as 1is
the case in those which follow, they result from particular
orders or combinations of orders which are peculiar to an
individuval machine. This chapter is concerned with a number
of unrelated sections having to do with operations which
frequently arise 1n programming,

In general, unless space is at & premium, it is better
to resist the temptation to use unusual combinations of
orders. Anyone who has to alter a program not his own will
realise the importance of this remark: discovering the
purpose of someone else's program, especially when only an
inadequate write-up 1s &available, can be a time-consuming
business, However, the order combinations given in this
chapter are suffioiently well known to be regarded as
standard coding conventions,

7.1 THE SUMMATION OF PRODUCTS, We often need to form
sums of products, and on the SILLIAC this cannot be directly
done in the accumulator. The accuracy can often be

enhanced by performing a summation either exactly or

with only one round-off, - This is comparatively easy
to do using the 74 order. All that we need to do is to
place the least significant half of the partially summed
products into the accumulator before performing the 74 order,
In fact, this can usually be done by an -5 order because the
quotient register will usually hold the last single half of
a summed product, Then, since 74 gives (n)(Q) + 2"39(A),

7-1

we obtain the double~length product in AQ. Of course, the
most significant part of the previously summed products needs
to be added by means of an L4 order,

Using similar schemes we can also arrange to add or
subtract products with double-length accuracy in a program,
As a first example we shall sum 50 double-length products,
agssuming we do not exceed capacity.

Example 1: Place the rounded sum

%9.0 (100 + i) x (150 + i)

in location O. The program is given in Table 7.1.

Clear location O for sum,

I:L_j

] 41
Waste order,
m+1 50 8L Put 1/2 in Q.

L5 114 Set 1 = O,
m+2 40 3L |

-5 F Round off (see Section 7.2).
m+3 | 50 ()F

74 (O)F (100 + 1) x (150 + 1i).

v
O
Ly

m+4 (L4 F
40 F

m+5 (L5 9L Increase 1 by 1.
L4 3L

m+6 |40 3L

LO 10L Test for i = 150,
m+7 L322 2L Re—-enter loop.

OF F >top,

m+8 40 T Roundoff constant = 1/2.
00 F

m+9 00 1F Increment

OO0 1F
m+10 JO 150F End of constant

74 200F
m+11 50 100F Starting constant
74 150F

Table 7,1
Program for Example 1

7.2 REVERSING THE CONTROL TRANSKFER, FURTHER
DISCUSSION OF EXAMPLE 1., There is a second coding trick
in Example 1. The end constant, instead of being 50 150F
74 200F has had -1 added to it, making the first order
JO 150F, The effect 1is to reverse the sense of the
following 32 order (in location m + 7) so that we trans-

fer control to re-enter the repetitive loop. 1f this had
not been done a 22 order following the 32 order would have
been required, and the 32 would have transferred to OFF,
Thus, a2 half word was saved. This technique is equivalent
to having a conditional transfer order act when tThe
accunulator is negative.

Another coding trick might have been used to save a
full word. The left-hand order at m + 1 puts 1/2 in Q
so that it may be used to round off on the first step of
the sum, this being the sole roundoff., Instead of storing
1/2 in m + 8 we could have used the order pair in m + 2
as the roundoff constant. This order pair is 1/2 plus

at mosdt 2'9 and would serve quite well,
As a second example we consider a summation of two
products with a single roundoff,

Example 2: Glven
cos @ in 10,

sin @ in 11,

=3

X in 12,
N in 13,

place the rounded quantity (x cos © + y sin ©) in location
20 and the rounded quantity (-x sin @ + y cos 0) in

location 21, The progrzm is given in Table 7.Z2.

m 50 10F x cos @ + 274
7 12F
m+1 40 F Most significant half to location O.
-5 F Least significant half to A,
me2 50 11F ¢ sin © + 2752 (1.s. half of x cos G
74 13 v 2740,
m+3 L4 T 4dd most significant half of x cos 9 + 240
40 Z20F Store X cos @ + y sin © + 2"40.
med 50 11F -x sin © + 274V,
79 12F
m+5 40 F
-5 F -
m+6 50 10F y COS @ + 2"'39 (1.s half of -x cos O + 2-40)
74 13F
m+7 L4 P

40 21F Store -x siln & + y cos & .+ 2"40.

Teble 7,72

1

Program for Example 2,

7.3 BINARY SWITCHES, It is sometimes necessary to do
two different operations alternately. ‘This can be done
by changing the sign of a number each time we pass 1t so
that it will be altermately positive and negative.
Usually it is not necessary to use a special number for
this because some number or order pair in the rest of the
program may be used. To accomplish the switch an L1 order

=4

followed by a 40 order is used to change the sign of the
number and put it back in its location with sign changed.
A conditional transfer order may then be used to decide
which of two seqguences will be performed,

A variation is the requirement that an order (or order
pair) take on two different values alternately. This can
be accomplished by using the ldentities

b=(b+ a) - a,
and a = (b + a) - b,

Thus, if the current value of an order (or order pair) is
subtracted from the sum the other wvalue is obtailined.

)

Example 3: Arrange a program 10 alter the address of
the left-hand order at (m+2) so that it takes on the values
O and 5 alternately., A program for this 1is given in Table 7. 3.

m any order
L5 ©pF Put sum of orders in A
m+] LO 2L Form alternate address
40 2L s Store alternate address at (m+2)
m+2 L5 (O)F
L4 12F Normal program order
P F+ OF Sum of L5 OF L4 12F

F8 24F and LS5 5S5F L4 12F

Table 7.3
Binary Switch

In Table 7.3, only a single address is taking on
alternate values and it is also possible to carry out the
switch using the program of Table 7.4. In Table 7.4 the
50 5F order at location m is provided for the switch, If
some order which needed address 5F could be used here, we
should be very well-off 1ndeed,

=5

m 50 BF

L5 mF
m+1 LO (m+2)F
46 (m+2)F
m+2 L5 (O)F
L4 (12)F
Table 7.4

Binary bSwitch

7.4 TESTS FOR O AND =1, In order to test for a
varticular number value held inside the machine 1t 1s

enerallyv necessary to use two tests. However, the
& ’

numbers 0 and -1 can be tested for using absolute value
orders and & single test. 1In machine language O 1g the
only number whose negative absolute value 1is positive, and
-1 is the only number whose positive absolute value 1s

negative, Thus we can test for O using an L3 order followed
by a conditional transfer order, and we can test for -1

-39 39

using an L7 order. Similarly, we can test for -2 "“or 1-2

using F3 and F7 orders, respectively.

Example 4: Transfer control to location 200 if A 1s
zero but transfer control to location 300 if A 1is non-zero.

Two ways to do this are given in Tables 7.5 and 7.6, The

program of Table 7.5 has only two words. The program of
Table 7.6 has four words but will be faster than the other

if A is usually negative, Moreover, the program of

Table 7.6 can be used to transfer control to any of three
locations depending upon whether A is positive, negative,

o 2el’0,

m 40 F (L) to O
L3 F - 1(0) 1 to A

m+1 36 200F To 200 if -}(a){> 0, i.e., if (A)= O
o6 300F To 300 if (A) # O

Table 7.5
Testing for Zero

m 36 1L
26 300F To 300 if (AY< O
m+] LO PP (4) = 2~39
36 300F To 300 if (A) = 2737 : 0, i.e., if
(A) > O
m+2 26 200F T¢c 200 otherwise, i.e., if (A)= O
P 00 F Constant 2“39
00 1F
Table 7.6

Testing for Sign

7.5 USE OF ORDERS AND ADDRESSES AS CONSTANTS.-V,+V,39 and
3] orders do not use their addresses, so these addresses can

often be used for other purposes., For instance, they may be
used to store a starting address taken by a cycling order or

an increment which is used to change an address., In such
cases we naturally use 42 or 46 orders to make certain that
the function digits do not become altered.

In the following example the address of a +5 order 1s
used as & counter,

Examvple 5: Given the positive number a in A, write

m

a closed subroutine with old style entry which will furnish

the positive integer m such that 1/21i oty < 1. The program

..

(=1

is given 1n Table

7.0 R

m 4.0
+5

m+1 4Z
43

m+2 L5
00

m+3 40
- 36
m+4 | L5
22

m+5 LF5
40

m+6 20
GO

7'7'
¥

E’l

Store a at location O

Form link

Plant link
Clear counter

onift a

Test to see 1f 2pa(]

Counter to A

Link
Count

Re—-enter loop

Wacste order

Table 7.7

Address Use in +5H Order

CSETTING AND STAR!

'ING OF CYCLES OF ORDERS., In

many cases we have cycles of orders, some of which are belng

modified by the same 1ncrement,

indexin

In such cases, 1I the

order is not used, the variable addresses can all

be modified by modifying one order and then deriving the

other orders (or addresses) by adding the constant

jifference between the wvariable orders,

When this 1s done

it is economical to use the same orders to set these

addresses when the cycle is begun,

The following example

with the program given in Table 7.8 illustrates this:

Example 6:
200 + i the sum (10) + (100 + i) + (200 + 1),

For 1

O, T4...

.oy 99 place in location

m LS 7L
26 _4ljf} Set 1 = O
m+1 PpLS 10F l Form.(10) + (100 + i) + (200 + i)
L4 ()F and put in 200 + 1
m+2 | L4 (OOF
40 ()F
m+3 | L5 OL
L4 2L Increase i in m + 2
m+4 | 40 Eﬂ;?*k/;;ncrease i in m+1 and test for end
LO 9L f f
m+5 | 42 1LZ/f
.36 1L
m+6 OF F Stop
00 F Waste order
m+7 L4 200F Starting constant
40 200F
m+8& 00 1F Tncrement
CO 1F
m+9 74 300F End constant
00 100F Constant to change i in 2L

Table 7.0

ﬂl‘

Resetting oI

Addresses

In Example © the addresses in location m+2 have
been changed and then that in mn+1 has been obtained from one
of them. Notice that the end test has been combined with the
second address change and that the end test constant is not
L4 but 74 so that the 36 order at location m+5 will cause
re-entry to the repetitive loop.

When two orders have to be varied in a single cycle, 17T

-9

is advantageous tc let these form a single order palr as in
Example 6 so that they can both be modified simultaneously
by the same orders. This arrangement is not always possilble
and the second best arrangement is to place the variable
orders on the same side of their respective order pairs SO
that the orders required to modify them will be as simple

as possible. Of course, the use of the indexing order
makes such considerations unnecessary.,
For very simple operations it is sometimes advantageous

to do three or four operations in a single cycle. This
saves time although the advantage 1s bought at the expense

of more orders. This is illustrated in Example 7.

Example 7¢: Add the numbers 1in memory locations 10

to 14, putting the sum in location 15. 1t 1s simpler and
faster, both in coding and in machine operation, to use the
program given below than to write a repetitive code

which counts.

L5 10F
L4 11F
L4 12F
L4 13F
L4 14F
40 15F

7.7 USE OF THE QUOTIENT REGISTER FOR INTERCHANGES,
In many programs we wish to replace the number in a certain

storage location and yet use the value that is there 1o
continue with the calculation. In such cases the old value
can be placed in the gquotient register before the new value
replaces it in the memory. Thus, the old value is avallable

in the guotient register for further computation.

Example 8: Store A in location 10, but use the old

7-10

(10) as a dividend to form (10)/(11). The program is then

50 10F
40 10F
-5 ™

60 11E

7.8 TESTING IF NUMBERS ARY GREATER THAN ONE-HALF

When scaling numbers it is very often necessary to test

when pumbers are larger in magnitude than one-half. This
can easily be done with tThe approPriate L or - order.

For example, the order LL n will cause the accumulator to be
negative if the magnitude of (n) is greater than or equal

to 1/2.

Example 9: If |(10)I > 1/2 replace it by half its
value. The program is given in Table 7.9,

m IL 10F 1/2 + {(10)] to A
32 (m+2)F
m+ 1 L5 10F
10 1F
m+ 2 40 10F
Table 7.9

Scaling by Testing for One-Halil

Sl

7.9 CONVERGENCE CRITERIA When iterations or
repetitive calculations are carried cutjwc freguently want
to stop when we have achieved the maximum accuracy. In
some cases it is difficult to specify in advance The

tolerances which can be used as end criterila because
we have to compromise between achieving the greatest
accuracy and yet assuring that we terminatve the processes
(i.e., don't loop).

7-11

In such cases it is worthwhile to use more complicated
criteria which will give us maximum accuracy but which
will not loop. One such criterion is to terminate the
process 1f e < e

n - n+l
which tends to zero as the process converges with increasing

where e is some positive number

n. This criterion will terminate +the process only when
either e is the same for two successive iteratlions oOr
when the roundoff error has actually caused it to 1lncrease.

7.10 MARKING It is often possible to use marking
techniques instead of the more usual countlng processes.
The simplest illustration of such a technigue is Library
Routine N3 where a sequence of numbers read Irom the tape
is automatically terminated by the mark N. In this code
instead of céunting up to some predetermined number we
test each character as it is read from the tape until 1t
1s N,

A binary digit is sometimes shifted as a marker; this
is illustrated in the next example.

Example 10: Using a print routine stored at locatlions
beginning with 50 print the 7 numbers in locations 10-16

- The program is given in Table 7.10:

o 19 7F ' 2“8'to 1. This is the marker
40 1F
1 L5 - 1F
00 1F Advance marker by shifting
2 40 13
32 3L Test for end
3 l Of F Stop
L5 (10)F
4 39 ; Waste Order
50 471,

P, Jr 26 50F Enter print routine
|

5 3L
O ;L 40 3L Increase address of number
; to be printed
26 1L

Table 7.70
- Use of a lMarker

In the program of Table 7.10 the marker is shifted
into the sign digit to indicate the end of the repetitive

procegss. This technique can be used in a similar way for
completely internal programs. For example, when we are
dealing with a group of numbers in the memory wWe may
arrange that the storage location following the group

contains some unigue number such as O or -1. Then the
code merely has to test for the preéence of one of these
nunbers rather than for a predetermined count.

7.11 REMAINDER IN INTEGER DIVISION In the general
case it is difficult to compute the remainder Irom the

residue that is left in the accumulator after a division.
However, if we are dealing with positive integers less
than 23 in magnitude we cah do thig qgquite readily. We
place twice the dividend integer in the quotient register,
clear the accumulator and divide by the divisor integer.
The accumulator then contains twice the integer remainder
and the quotient contains twilce the integer quotient.

We store an integer y as y ¥ 2_39.

Example 11: Divide the positive integer in location
20 by 10. Place the guotient in location 11 and the re-
mainder in location 12. The program is given in Table 7.11.

‘A3

m 51 20F y % 2727 to Q
00 17 v x 2”3 4o 40 _

w1 66 4L (yx273°) f10x273) w27 = y/10
10 1P -

m+2 40 12F Store remainder
NO 11F Store quotient

m+3 20 pF
00 P Wasgte order

m+4 Q0O F
00 10F

Table T.11
Remainder in Integer Division

7.12 BINARY CHOPPING This is the method of repeated
subdivision of an interval. It is easy to code although
it may be wasteful of memory space and it is slow because
it will usually take the full 39 steps to go from an interval
of length unity down to one of length 2_39. '

If we use binary chopping to find the zero of =
function, we proceed as follows, We choose bounds for
the zero, perhaps -1 as a lower bound and +1 as an uppér
bound. Then we bisect the interval and compute the function
at the midpoint. Depending upon whether the sign of the
function at the midpoint agrees with the sign of the lower
or upper bound, we substitute the midpoint Tfor tThe '
appropriate bound. After 39 steps the difference between
the two bounds will Dbe 2“39 and the zero will be determlned.

The code will be simpler if the signs of the upper
and lower bounds are known so that a comparison with the
sign of the midpoint is not needed at each step. This 1s

7-14

the case in Example 12.

Bxample 12. Find the square root of a = 0.26943 by

using a binary chopping technique on the function a . a

8
Here we choose initial upper and lower bounds (written
2 and a) of 1 - 2-39 and 0. Instead of counting 39 steps,
2 _ 5 < 2721 the
code stops. The program is given in Table 7.12. on page 19.

a test has been included so that it 2.

7.13 EVALUATION OF POLYNONIALS Polynomials are
best evaluated by use of a recurrence relation. Glven the

polynomial
- N n-i _ n n-1 |
f(x) = ¢ a; X = ayX’ + 84X t oo o va 4 X+ oA,
i=0

we can express it in the form

Sip1 TE By Y 8y

SO = 0,
Sn+1 = f(x).

See Table 7.13 on Page 1G.
If, as is often the case, the coefficients a, are

the gquantities (m+1) the recurrence relaticn becomes

S;,1 = X5, (m+i),
Sy = 0,
Speq = £(xz),

Example 13 shows how a polynomial may be evaluated. 1n

practice the summation of products should be done witn
o 74 order as in Example 1, but we <o not wish to obscure
the general 1dea here.

T-15

Example 13: Given x in location 49 and coefficients
in locations 50 through 607 evaluate the polynomial
17 i
X x (71 (50 + 1i).
i=0 '
The program is given in Table 7.13 on Page 20.

7.14 PRINTING OF SIGNS IN PRINT ROUTINES When
the sign of a number is to be printed, thilis can be done
in one less order than by the straightforward method by
the use of logical shift orders. Thus, 1f we wish To
output the sign of the nuiaber in location a, then dependling

on whether we wish to begin with a left-or right-hand order,

we may use one of the methods:

m

50 a
m+ 1 L5 m+1
- 04 137F

m+ 2 82 1F

or 4] 50 &
1 m+
m+1 04 37F

82 2F

Table T7.14

Output of a Sign with Logical Shift Orders

Alternatively, if we have a constant available where

right-hand address differs from 5 by a multiple ol 8 and
b is the address of this constart, a slightly guicker

method is as follows:

m L5 a
50 b

1+ 1 16 3F
82 1F

Here we may start with either a right-or left-hand order.

7.15 LOGICAL OPERATIONS ON SILLIAC The operatlons
we consider replace any digit by either O or 1 depending
only on the values ol the corresponding digits of two
nunbers, say X and Y. OSuppose wWe have & scheme as follows:

Digit of X Digit of ¥ Digit in result
. - ~__of operation

Wﬂ#ﬂw

0 0
0 1
1 0
1

Qo O T D

l

where a, b, C, d are given digits (0 or 1).
The four numoers, a, b, ¢, d, characterize the

operation. We shall write them in an array as follows:

P
(a2 b I 1

E.g. O O
' 0 1.

is collation as performed in SILLIAC using & JO order.
To form the complement of a number we use an F1 order.
A11 other cases to be considered will depend on both
¥ and Y. It will be assumed that X and Y are stored 1n

e e

locations x and y respectively and that the result is TO

appear in the A register.

of course no-

Operation
).
(and)

Xe®y, XzY
(not equil-
valent)

x|y
(Sheffer
stroke)

De?

5 unigue.,
Finition Crders Operation
0 0 50 % Y
0 1 JO y (Pierce)
E
-2
O HO X X=Y
1 1 15 v (equals)
-1
JO y
~(
O 1 50 X .Y
1 0 LSy
~ 4
JO ¥
-~
-0
1 7 50 X X<Y_
1 0 JO y (implies)
+ 1
Table T.15

Various Logical Operations

7~108

The sets of instructlons are

Definition

1 0O
0 0

Orders

0 X
L1 v
+ 0O
JO ¥
-4

SO X
L1 vy
+0
J O
-4
-4

0 X
-~
JO ¥y
-0

10

17

e
<

13

14

15
16

L5
10
40
L5
10
L4
40
50
[0
LO
40
32
L5
40
27
L5
40
LT
LO
30
OF
00
00
00
1L
LL
00
00
00
Q0

00
Q0

Q0
00

12L

Square Root by Binary Chopplng

7-19

1F
F 5/2 to location O
13L
1F (& +a) /2 =a_ to 14L
P
141
141
141
111
15L& ° - a to 15L
1L
141
13L Change a
8L,
14L
12L Change a
15L
16L Test for a ~ - a < o3
L
ki) Sarfele
)
B n = 0.,209473
20694 300000000
4095F & = 1 - 2737
4095F
) a = 0
B
B 2.,
- 0
o 5= 31
4F
Table 7.12

£1 F

50

50 49F X
79 F XSi+N(50+ 1)
L4 (SO)F
40 K
F5 1L Increase 1
40 1L
LC 51 Test for end
32 L
OF F
IJ F End test constant
L4 63F

Table T.13

Evaluation of a Polynomial

CHAPLER 8
CODE CHICKING METHODS

Code checking is an art, and can be learned only Dby
practice. Nevertheless, there are certain rules, most of
them commonsense, which greatly help both yourself and other
people. The purpose of this chapter is to present some of
this advice, in the hope that it will aid users of the
SILLIAC in getting their yrograms working rapidly and

with a2 niniomum of headaches.
8.1 WHAT 70 DO BEFORE STARTING CODING . Observation

of a number of points in the laying out of a program will
considerably increase the ease with which it can be put

into service. .
The first and moSt important of these rudles 1s that
one should not start coding until a complete flow digram
(i.e. a diagram setting out the course of the whole
calculation) has been made, setting out the whole ol tThe
problem. There is a temptation to leave some thorny sections
of the work until later, and to get on with coding the easy
bits. This temptation should be stoutly resisted because,
inevitably, it will be found that the sections ol tThe flow
diagram which were left unfinished will considerably affect
the approach to the problem, and will probably invalidate
much of the coding based on the incomplete flow
diagram. Moreover, the flow diagram should be sufficiently
complete to allow annotations of the order lisv to be

identified with corresponding sections of the diagram,

In preparing the flow diagram, thought should be given
to the way in which the program is to be checked. For
example, wherever possible, printout routines should be

8-1

chosen, or constructed, in such a way that they can be used
with sections of the program during tesiing.

The'ideal way to assemble a program is TO test
indi-ridual sections as fully as possible and then 1o
combine these sections into a complete program for final
testing. Certainly all closed sub-routlnes written by
the programmer should be tested individually before thelr
inclusion into the full program. This ideal can be
approached with very 1little effort if arrangements are
made which will call for greater amourts of printout
during the testing of a program than will finally be
required. This can be done either by modifying the

programn to use its own printoud routines or by use of

suitable diagnostic routines, s is described below.
8 2 WHAT TO DO WHILE CODING, Individual coding lists

should be accompanied by sufficient explanation 1O make
their interpretatlon as easy as possible. Measures

which help here are:

(a) drawing of "transfer of control" lines
and "switch" symbols, preferably in red
pencll;

(b) adding descriptions of groups of orders,
which correspond to the descriptions on
the flow dliagram;

(¢) writing beside "switch" orders, constants
and pseudo-orders, locations of any other
orders, constants and pseudo~order£ with
which they are associated. (This last
is particularly important when alterations
are being made to a routine in the
process of error eradication.)

When a routine has beern written, it should be read

through and checked immediately. This is not a very good
8~2

check, because of inevitable blind spots which the coder
develops towards his own work. A better check, 1f this is
possible, is to put the routine away for a few days or
weeks, and then to go over it again. A substitute for this

is for somebody (not a member of the SILLIAC Iaboratory
staff!) who can be depended upon not to say "Yes" out of'
mere politeness, to go over the routine with the originater.,
When punching prbgrams'up, sufficient delay characters
should always be left for splicing (see next chapter) at

the end of each group of 10 or 20 words, between subroutines
and after directives and lists of parameters; tThese also
help in locating positions oun the tape.

It is important to avoid having to think while at the
key-board, and Ior tThis reasoh, it is best that all
information, including directives, N orders etc. should be
written out in detail beforehand. '

A program of any length shoulid always be checked by
the programmer himself, by reading out the manuscript to
somebody who will'check it against a printed version pro-
duced from the tape. This minimises the possibility of
errors introduced by "wishful thinking" in reading someone
else's handwriting.. '

In arranging the lay-out in the store, it 1s desirable
not to use storage locations from'9OO ohwards (or even from
800 onwards if this is possible). This will allow
Diagnostic Routines to be used to fullest effect. Also, 1T
sufficient storage space is avalilable, the working space
used by individual routines should be kept grouped: the
usual convention is to use locations which are associated
with the posilitlions of.routines'themselves, or are at the
beginning of the store (do not use storage locations O,

1, or 2; the contents of which are not available to Pos%T
Mortem routines invut with a bootstrap start).

0=3

Tf o D.0.I. other than X13 is being used, at the end
of each routine, a group of 10 or so storage locations

should be left for the insertion of corrections associated

i

with the routine. If the saving 0I

storage space 1S
important, it may be necessary to rewrlte sections of
routines once a complete program is workingj; however, 1t
igs better strategisally to get the program as & who le
working first and then to concentrate On "polishing it up"
as a subsecuent operation, than to spend TOO much tlme on
"nolishing" before the program as a whole is working.

The tests to be carried out on individual sections of

g program anc on a completely sssembled program should Ute
devised so that they are as searching as possible but are

ot the same time sosimple that they can be checked easily

by hand. For example, if the progran evaluates a polynomial
with specified coefficients, for code checking purpose=s, all
but two or three coefficients can be made equal To 7ero, and
the independent variable x chosen to be sSOwue simple number,
such as 1/2. If the code solves a differential equation
coefficients can be picked so that the equation has a
tabulated solution. If the program is to analyse experimental

data, pick some particularly simple fake "data". (This is

preferable, at least in the early stages of code checking,

to picking data which have already been analyzed by hand.

The hand computation is often found to be wrong, Or of

ingufficient numerical accuracy for code checking, or both.)

A1l test runs should be prepared with provision Tor

adequate printout at key points of the program. If

sdequate printout arrangements are nov available as part of

the program, they can be provided by use of DI (or D7)‘WPZD15'
—aee next section. Always insert a 20 1019N order on the tape

8-4

immediately before the order which starts the prograi. O

ecnable read-in of modifications and of D1(or D7) or D15.
Standard forms are available for codiling: these are

pre-printed with numbers O - 9. Although it is not essential
to use them, failure to do so often results in simple
mistakes in numbering orders.

A number of coding blunders cccur fregquently The

more typical blunders are listed in Table 6.1. It is
unfortunately true that the rore trivial ones seem tTo occur
most frequently.

At this point, we shall examine the vay 1n which
information about the progress of a program can be obtained
when it is presented to the machine. _

3.3 SOURCES OF INFORMATION, The Punch . The punch 1s The
most effective way by which data can be extracted from the
SILLIAC. However, there are other ways to obtain information,

particularly when a program does not run far enough to
punch any data at all.

i

If the input

The Reader .
tape stops before the entire program has veen read into the

memory, then an examination of the characters punched on the
tape just ahead of the place where it stopped will often
provide an explanation. '

The Order Counter and
Control Counter ,If the program is read in correctly but
comes to a sudden unexpected stop, then the order register
will exhibit the order on which the program stopped whille

8-5

(1) 15 orders used instead of T4 orders.
(?) Orders terminated by L instead of F ard vice-versa.

(3) The renumbering of a code not complete after a
modification has been made.

(4) Simple mistakes 1n nurbering when standard codlng
pads are not used. -

(5) Rounded multiplication used when dealing with
integers.

(6) Control transfers to the wrong oddress or Wrong
order of an order palir. '

(7) Accumulating storage registers not cleared before
s cycle of orders is entered.

(8) The end condition for a cycle of orders uo%b
| correcy .

(9) Allowing the teumporary storage of a subroutine to
erase useiful data. |

(10) Using a 46 crder instead ol a 42 order and vice-
' versa . '

(11) Omitting directives and starting crders on the
program tape.

(12) Incorrectly remembering The specifications of a
subroutine.

(13) Forgetting to reset addresses when coming back
to a cycle of orders.

(14) Making corrections incorrectly.

(15) Using the same relative addresses on correction
words although the preceding directive 1s
different from that ol the progran.

(16) Overlooking the digits shifted from the quotlient
register to the accumulator on a left shift.

(17) Attempting to convert fractions greater than
one-half by using the J terminating symbo L.

Table 8.1
Typical Blunders

3~6

the order counter will contain a number one greater than
the storage location from which the order pair came. W1ith
this information the programmer can often discover the

cause of failure of his program.

If the SILLIAC loops, observation of the slave oOr
monitor tube will gilve an indication of how extensive the
loop is. Then, if the machine is stopped and the contents
of the order register and the control counter noted, we
usually have encugh data to identify the loop 1n our
program. The slave tube ean also be used to ensure that
orders are being input into ajgroximately the right
locations, thus enabling inadvertent overwriting to be
detected.

Printout of specific items of information can be
obtained by the use of one of the techniques described 1n
the following sections--either by specific modification to
the program, or by the use of post-mortem or diagnostic
routines.

8.4 BILOCKING ORDERS., This is the name given to control
transfer orders which are used to replace normal program
orders, so that some printing or checking can be cone at
the point of replacement. Before control is restored Tto
the program the replaced order of the program is executed
and the contents of the arithmetic registers are restored.
Thus the original program is unaffected, but the extra orders
that are obeyed can be utilized to do printing of desired
data. | ,

An example may illustrate this: ©Let us suppose that

() we have a program 1in which we wish to

print (19) after the left-hand order
of the order pair 40 9F L5 29F at storage

87

location 100, has been obeyed,

(b) we wish to preserve the quotient register but not
the temporary storage of the print subroutine,

(¢) 1locations 800~804 are unused by the program,

(d) +the program print routine starts at 200,

(e)

the original program ends with 24 999N 26nN.

We then prepare the following modification tape:

MODIFICATION TAPE

00 100+ Directive

40 9T Plants blocking order in program
26 8OOF '

00 500+ Directive

NO 4L Stores Q at 804F

L5 19F ' -

22 1L Enters print subroutine
50 1L

26 200F IR

L5 29F Does ommitted order

50 41 Restores Q

26 101F Control back to program
26 nN otarts program

It might perhaps be noted here that control can at any
stage of a calculation be transferred to any point required
by bootstrapping in the order pair 2DXYZ00000 where XYZ
is the required destination of control in sexads. and D is
2 Or 6 accOrding as control is to be transferred to a right-
or left-hand order. This procedure will overwrilite the

contents of location O.

8~3

8.6 TYPES OF CHECKING ROUTINES, There are several
types of checking routines. One type prlnts out the
contents of cert~in memory locations alter a program has
stopped. We call this a post mbrtam routine.

A second type takes a given program and allows 1t to
be obeyed order-by-order while printing out information
about the course of the program. It is often called =
seguence cheoking code. |

A third type arranges for information to be printed
out at specified points of a program. It 1s usually
Kxnown as a check point or blocking order routine. The
second and third types &are Known as dlagnostlc routines.

8.7 TFOST MORTEMNM ROUTINRS lerary Routlnes C3, C4,
o, 09 These are prlntlng routines and have been arranged

S0 that they can be used with little or no preparation

on the part of the programmer., They are read into the memory
with bootstrap input routines and are located in stornge
locations at the end of the memory, the longest occupying
locations from 986 to 1023 and using locations 0, 1. and 2,
as temporary storage. The end of eaéh of the post mortem
tapes contains 100 two-decimal-digit numbers. These

numbers are used to specify the locations from which printing
will occur. Suppose, for example, that we wish To Know

the order pairs in memory Jocations 540 to 549. Then we

read in Routine C5. When it stops we find the number 54

on the end of the tape and place it in the reader. When
the START switch is moved, the order palrs in locations
540 to %49 will be printed and then the SILLIAC will

stop. If we start again we will get the order palrs 1n

locations 550 to 559. (odes C3 and C4 perform similar

functlons for decimalzfracuiOVS and d601mal 1nteg@rg.
Note: There is no section numbered 8.5, h

8=9

The programmer should keep in mind the storage locations
used by the nost mortem routines sO that he will be able
to take full advantage of these important checking

routines.

8 8 POST MORTEM VERSION OF DECIMAL ORDER INPUT ROUTINES,
Library Routines ¢1 and C12. These are very inportant
checking routines and are usually the first ones used
after a prograu failure. C1 is used when XL has been used
as a D.0.1., C12 when X12 has been used as a D.0.1l. They
compare the contents of the memory with the contents
of the input Tape. Only‘discrepancies are printed out,
enabling programmers to discover which orders of a
program have become altéred while the program was 1n the

memory. This ia an aid in making sure that orders which

should have been modified have been modified correctly and

that no order has become modified accidentally.

C1 and C12 are used in the following manner. Tl.e

Post Mortem Version of the Decimal Order Input is read
into the memory in the usual way with a bootstrap inpud
routine. (C71 occupies storage locations 962 to 1023, and
C12 occupies locations 986 to 1023.) The program tape
is then placed in the reader after its copy ol the
Decimal Order Input, so that the Decimal Order Input 1is

- not read into the SILLIAC. Then when the machine ig
started the program tape will be read and the words

created from 1t compared with the corresponding ones 1n
the memory. When a discrepansy 1s found 1t will De
prlnt@d on a line g1v1ng, first, 5Pe location at which
the dLscrepaHCJ was found, second, the word read from the
tmpe printed as an order pair and, third, the word found

in the memory, again printed as an order pair. Thus a

8-10

typical line of printing might be

345 I5 000 40 34 15 546 40 354
indicating that the left-hend address of the order rair
in location 345 had become modified, taking the value
546, ' '

1t should be'poihted out that closed subroutines
which have been used will usually have their links
printed. This gives an indication of the pert of the
program from which they were last called in. Interludes
cause a large amount of printing'bécause the contents of
the interlude locations are changed twice in the course
of input and are printed out both times. '

Post Mortem Versions of the Decimal Order Input
routines cause the memory to be changed to the original states
as they are beling executed, so that if the program is
started the original'program will be performed again.

If desired, only selected parts of the tape need be
compared with the contents of the memory. However, when
doing this it is necessary that all the preset parameters
pertaining to that part of the program be input and that
the selected part of the program begin with a directive.

All post mortem codes occupy locations at the end
of the memory and all of them use storage locations Oﬁ.'
1, 2, as temporary'storage, so that it is desirable when
coding not o uée these storages for Consﬁantﬁ.ur
numbers which méy need to be printed out. Lt 1s
worthwhile to note that if addresses which are to be
changed are initially read in with their final values then
no printing will také place on the post mortem if they
have been modified correctly. ' ' '

8-11

8.9. THE ADDRESS SEARCH ROUTINE, Library Routine Cg.

“

Programs sometimes fg47 DecCuyse of a transfer of controdl

to ap order which causes the machine to stop. The ususal

order causing the stop 1s a zero left shift order because
the memory is normally cleared to zeros ovefore a new
program is read 1n.

Under such circumstances the offending traunsfer

of control order may be sezrched for with the aid of

Library Routine C2. The search routine is read 1nto the
menory, occupying storage locations normally occupled by
the Decimal Order Input. Next the address to be searched
for is read into the machine as a three characier
sexadecimal address. <The routine then searches the memory
(exclusive of itself) for order pairs containing this
address. When found they are printed out (in sexade~imal
form) together with their location (in coxadecimal form).

L

The routine naturally has other similar uses. [for

example, if it is known that some number becomes mocdified
but it is not known why, then the store order which does
the damage can be sought for in the above manuer,

8.170 INTERPRETIVE ROUTINE POST MORTEMS.C10 and C11.
These routines, when bootstrapped into the machine,

together with a parameter giving the location of the first
order of the interpreting routines with which they are working
will give the last interpretive order obeyed, 1ts address,

and the contents of the floating point accumulator.

C10 is used with A1 or A6 (the single length floating

point scheme) and C1! is used with A4 (the 1.7 precision
floating point scheme). ‘

8.11 CONTROL TRANSFER CHECK,., Library Routine D15.
This routine takes charge of 2 program and allows 1% to
be obeyed order by order. Each transfer of control that

is obeyed is placed in a list kept in a specified place.

Thelist is cyclic, that is to Say? the later entrles
overwrite the earlier ones in a cyclic fashion. At the
end of a program, the list can be printed, s¢ that 1t can
be discovered how the program reached 1its final end.

M

There is no printing during the execution of the programn,

so that this routine allows the program to be obeyed at 2
speed much greater thaw of similar . routines which
print. It is pos:ible to suppress storage of successful
transfers of control over a sectio. of the store. This
facility makes it possible to place 2l1ll tested routines
in one section of the store, so that transfers of control
in the routine under test only are stored.

8.12 THE CHECK POINT ROUTINE, ILivrary Routines D1, D7,
These routines are designed to print out intermediate
information about some other program. They use the
blocking order principle, and the programmer prepares
o, specification tape to describe the kinds of informatlon
he wishes to obtain. These two routines differ in that
D7 has been written to use only as much storage as is
used by the D.0.I. It is possible with D1 to go through
iterative loops and print results on various passages

through the loops; with D7, however, each use of a
blocking point reguires separate specification. Data
can be obtzined with both routines as an order pair, a
right-hand address, a left-hand address, & 10 character
sexadecimal word, a signed integer, a signed 12 decimal

place fraction oy a signed 5 decimal place fraction.

3-13

Library Routines D1 and DY are_very powerful checking
routines because of the great latitude given the programier
in choosing where and how he will obtain information and
vecauvse they utilize the programmer's own knowledge of '
his program. '

Other checking facilities not listed here are intro-
duced into the library from time to time, and for this
reason if the routines described do not appear to be
effective in any caseg o member of the laboratory staff
should e consulted.

§.13 WHAT TO DO BuFORE A CODE CHECK RUN,
Now that we have been introduced to the main "tools"

ovallable To 2 programmer as an aid to debuggimg his
program, let us return to some more practical aspects

of the debugging process. When a program igs written, it
should not be expected that it'will_be.free.from mistakes.
Finding mistakes is as much part of getting a problem
running as coding itself, and must be attacked with equal
care =nd deliberation. ' ' -

A 1t of the memOry locations of thé'routines_and
lists of constants etec. contained in the code, both in
decimal and sexadecimal notationwshouldbe‘made. The
latter 1s Very'useful'While on the machine, Since'the order
counter 1s reaaq sexadecimally. This l1list of locations
should be on & separate page, so that the information is
clearly set out and readily.available when code checking
st the computer. ' “
A general rule'conoerning'all:papﬁrs asociated with

a program 1s that théy should be placed on 2 Tile as soon
55 possible after they are originated, and from which they
are detached in case of emergency only. This applies to

flow diagrams, routines, lists of correction, tape
- 0-14

printouts and machine printouts. Each sheev should be

.~

asccompanied by its date of origination, and, 1T
the time of origination. (This is sometimes important if

relevant,

a2 number of code checking runs are carried out 1n one
day.) The liberal use of scissors and paste in condensing
column printouts will reduce the amount of paper involved,
and the use of transparent Sellotape to make small slde
tabs will facilitate reference to important sections of
the file.
In addition to

D1 and D7 (Check Point) and

D15 (Control Transfer Check Routine)
one cf which will probably be used as an integral part ol
the code checking run, familiarity with the following
post mortem routlnes 1s necessary.

C1 and C12 (Post Mortem Versions of D.0O.I.s
X1 and X12),
c3, C4, C5, and C9 (Post Mortem Printouts),
¢6 (Address Search Routine) and
C10 and C11 (Special Post Mortems for
Piloating Point Routines).

The programmer must be prepared to call Ior any one

of these post mortem routines ot short notice if difficulty
arises with his program during the code checking period.
Although the operator can give advice, only the programmer
knows the intricacies of the problem and hence the best
Diagnostic Routine To use.

It is important to appreciate the relative roles of D4
and D1 (or D7). Problems may be divided broadly into two
categories——-those which are largely mathematical in nature,
and those which are largely logical. These two categories
frequently overlap.

A problem which requires considerable thought 1n

8-15

planning its logical arrangement is likely to incorporate

blunders which result in corntrol pursuing the wrong course
through the program. Blunders of this type should be
eliminated before those involving incorrect wathematical
manipulation, and it is here that D15 is particularly
useful. A copy of D15 is available on the console, but
should 1t be desired to put D15 in specifiled locatlions or
preserve the D.0O.1l., a decimal version ig available which
1s attached to the end of the main tape and input by the
v,0,I., If, say, it was reguired 1o putqD15 1 location
700 onwards, the end of the main tape should read as
follows: ‘
201019N
24 pl
Pifth hole'Charaoters
Q07004
Code D15
End of tape. .
Here p 1s the location of the first order in the

main program to be obeyed.
- When the tape is read in, it stops on encountering

201019N. For code checking, the tape is moved on
manually to the fifth hole characters, and reading in is
continued by lifting the black switch. (In a production
run, the 201019N is bypassed via the black switch.)

It is unusual for D1 {or D7) to be used the first time
a run 1ls presented to the machine for test, because this
would reqguire the preparationr of a specification tape
which would almost certainly call for much more printout
than 1s really necessary. The use of D15 with the first
run 1s more usual because 1t is at this stage that the _
program 1s most likely to run "off the rails" and the course

8-16

taken by the program up to the time of stopping on an
illegal order can be traced. .

After the first test runm, D1 (or D7), will usually
be reguired and for these routines = specification tape
must be prepared. It is important that the instructions for
using these routines should be prOpérly understodd; ‘alfhough
they are the most useful Diagnostic Routines 1in our
Livbrary, they must be handled with care. Certailn
precautions are necessary, and if these are ignored, The
code checking method will itself introluce errors 1nto
the program. '

As mentioned in section 8.12, the basic difference

between D1 and D7 is that D7 occupies only the space
norma lly occupied'by the D.0.IL., and is designed Tor
use whem space is at a premium. D1 is more versatile
and occupiles more space. When usihg D1 (or D7) to
printout intermediate results in a test case that has
been done manually, write out on a sheet of paper the
locations of blocking orders and the printout expected

when each blocking order is encountered. File this with
your other papers, for, although one should nd Try to use
this information while the machineis punching out '
information during the code Check-.j it will be reguired

later, after lea-ing the machine., Because of the freguency

with which D1 (or D7) specification tapes are usually
producéd in the course of assembling a program, it is

best always to produce these as separate lengths of tape.
Always remember to place on the specification.tape ter—
minating éymbols which result in control being transferred
to the program--with D1, pN4 is the usual combination to
“use initially, as this gives the stop control to locatlon
p of the program, enabling t he operatorato insert the '
data tape in the reader if this is required.

3-17

Parameters and data associated with the various
tests the programmer has devised should all be inserted
on the main tape after the point where D4 and/or D1 (or
D7) is incorporated. These tests should each be preceded

by a clearly written label, and separated by an adeguate
series of delays.

There are two ways in which oorrections?can be
inserted in the program. One is to have 2 geparate
correction tape whnich 1s inserted Jjust before control is
transferred from the L.0.I. to the program proper. As
Tthere are usually a number of corrections required, and
these corrections will be made at different times, tThis
method necessitates reproduciug, at each stage, the
correctlion tape containing information recorded so far
and then adding it to the new corrections. With longer
programs, this approach is both wasteful of editing
equipment time and likely to introduce errors if the
editing equipment happeus to be operating unsatisfactorily
at the time: however, 1t 1s quite adequate for shorter
programs. '

A second and more satisfactory technique is 40
splice corrections into the tepe as they are made. If
This 18 done it is best to splice each correction into
the tape at the end of the routine'with'which it 1s
associated, rather than at the end of the cbmplete tape.
I'nis allows individual routines to be taken from a
corrected tape and re-arranged at a later time without
the risk of missing correétiOES. in splicihg tape the
precautions outlined in the next chapter should be observed.

One last point concerns thetechnique'ofmaking
corrections on the code sheets. These should never be

made by rubbing out, becsuse subsequent diagnoses may

3-138

involve spotting the fact that a given instructioﬁ has been
altered. The besgt plan is to make the first alterations in
ink, the second in red pencil, the third in blue etc. Also,
consilderable care should be'exércised to eunsure that the
alterations are actually made on the tape: the safest plan
is to follow a rule that tape alterations and alterations

in code lists are always carried out at the same time.

When the machine is to be wused for a code check the
following should be taken: '

(1) The tapes, preferably not more than two. Any
tape more than a yard long should be rolled

up so that it will not become tangled while

reading in.

(2) The operating instructions for the check run
written down on a sheet of paper.
(3) A list of the store locations(in sexadecimal
as well as decimal) at which the routines
and tables of data should be stored. Yhen the
machine stops on an illegal order the programumer
must be able to decide immediately whether its
location (read from the order counter in sexadecimal)
places 1t within hils program or 1in an unused
| part of the store.
(4) At least a mental picture of what should appear
on the monitor screen as the program is reaua in.
8.14 WHAT TO DO *(AND NOT TO DO) DURING CODE CHECK RUNS,
If the above recommendations are followed, the number

of separate tapes brought to the machine will have been

minlmlised.,

The programmer should put his name and probulem number
on the blackboard queue and wait his turn, standing well
away from the machine while walting so as not tc block the
operator's view of the lights in the order register, A

8-~19

hopper should be obtained on reaching the head of the gqueue

to take tape as 1t passes through the reader and to take
the output tape.,.

When the operator calls the prograrmer's name,the
programmer should hand her the tapes and read out the
opverating instructions. Far more will be learned about
The operation of the program if the handling of the reader
1s left to the operator and the programmer focuses his

attention upon the monitor screen and/or the order
counter and register.

As the program is read in, the programmer should
watch the monlitor screen and check that it is being stored
1ntc The correct'part of the store.,

Lfne operating instructions for an initial run might
be as follows: ‘

(1) Read in mein tape until it stops. If it does
not stdp on a legitimate stop, mark the
position at which it stops before the tape
is removed from the reader. (This precaution
18 helpful in diggnosing the reason for incorrect
stopping.) '
Bootstrap in a copy of D15, or If the decimal
version is being used, move tape on to beginning
of D15, re-starting tape with black switch.
D15 will be read in and the gpecification
tape and the remainder of D15 should be read
in as degcribed in the write-up. _

s
e

(3) Move main tape onto the parameter combinations
under test. Re-start with black switch.
If the output produced is olearly not &as expected
(e.g. 1f there is no output at all), transfers of control
stored by D15 can be output (see D15 write—up). Output

8-20

will normally be taken on the punch at this stage, and soO
incorrect output will not slways be detected immediately.
Only if very little output is called for should it be

taken on the printer. If the output available gives no

clue as to the best locations for blocking orders for

D1 (or D7) and the coder has erroneously assumed that

output 1is correct, it is best to repeat the above operations,
and obtain the D15 output before proceeding to use

D1 (or D7). |

If a test is not being tried for the first time, the
procedure will normally be varied after the first StOp,
perhaps as follows:

(1) Read in operator's copy of D1 until a stop is

encountered. |

(2) Read in specification tape.

(3) Read in remainder of operator's copy of Di.

(4) Insert main tape in reader in froxt of
appropriate test parameters and start agailn
with black switch. '

Whenever the machine stops, the address at which 1t
stops should be read from the order counter and noted in
sexadecimal. The operator will normally read thils
information out.

If the program stops on the division hang-up, write
down the memory location of the division order, look at
the number register (R3 register) to see whether the
divisor is zero or very small, and then by—pass the
division order with the white switch. If theprogram stops
on an illegal order, insert the address search routine C6,
followed by a short tape on which the address of that
order is punched in sexadecimal. Search for instructions
containing these and the ten prece ding locations (this

is done by raising the blagk switch when the address
-2 1

search routine stops on each of nine separate occasions).
1T the 1illegal order is a zero left shift order 1n an
unused part of the store there is no point in searching
for transfers to previous locations. Familiarity with
the teohnique of using C6 is desirable before going to
the machine, as this will make it easier for the operator
to assist.,

This address search routine is useful if the 1llegal
order is in part of the store outside the program: 1if
this is the case the usual cause is a transafer of control
in which an F termination has been used in lieu of an

L Termination.
This technique 1s also useful 1f the 1illegal order

is in part of the store occupied by the program, for the
usual cause 0f such an occurrence 1s & transfer of data
to the storage location concerned. The store order with
the offending address can be found quickly ip this way:
the blunier is usually due to the use of an L termination

in lieu of an F termination.

The operating instructions given above, or some
equivalent instructions which apply to the particular
program and the method of checking employed, should be
written down on a sheet of paper which is kept

separate from other papers so as to be readily available
during'the code check,

The code check output should be taken on the punch
in the interests of speed. An important point here is
that the characteristic rhythm of the punch will guickly
‘indicate when an output of storage locations containing
zeros (with the post mortem routines), or an unsuccessful
search (with C6) for orders with certain addresses,occurs.

8-22

This information often helps to curtail output considerably.
The operator will be able to assist 1n thisfrespect.
Tapes should be taken away from the machine in tape

'hoppers as soon as the code check has finished, and wound
up either in the tape preparation room or with the help

of the winder on the far side of the SILLIAC room. Hoppers
must be emptied as quickly as possible 30 that they can

be used by some-one else. Similarly, tape printout should
be carried out using printing facilities in the tape
preparation room: this relieves the congestion around

- the console,
8.15 ADDITIONAL HINTS The result of the code

checking run should be taken away to a quiet place for
consideration--for preference, a place with a desk
computing machine. The SILLIAC and tape preparation
rooms are not well suited to thls purpose. _ .

In the initial stages of code checking, the calculation
is likely to stop in some odd place in the memory, and it
is necessary to determine the reason for this kind of .
failure. Thils 1is usually rather easy with the help of
D15, and also if liberal use has been made of DI (or D7)
blocking orders. It is often useful to place blocking
orders 1in various‘places, without any printout
~being specified, just so it can be determined whether a
certain section of the program was in fact reached during
the abortive computation.,

In later stages of code checking, the machire will
run through the calculation and stop on the programmed
OFF order--but the answer will still be gquite wrong.

By using D1 (or D7) to print out intermediate results
ot various stages of the calculation, and checking thece
on a hand computer one by ohe, it is possible %o localine

8-23

the errors in the code, and eliminate them one by one.
It is not always wise to stop as soon as one error
has been discovered in a program. It is desirable 1l
possible to make sure that this particular error does 1n
fact produce the particular printout obtained.
Otherwise there must be at least one other error in the
program, and already enougn information may have been
obtained to locate this other error as well. However,
such a procedure is not always feasible, as it may often
be guicker to try out a program agein having rectified the
blunder you have found, than to spend time working out

its possible effects in detail--a balance must be struck.
Do not be satisfied with qualitative Z-or 3-Tigure
accuracy checks on.answérs, Use a desk calculator and
work to B-figure accuracy, or else use parameters which
give very simple answers which can be checked 10 12-figure
sccuracy by mere inspection. Remember that errors 1in
the program may result in wrong answers in the fifth
significant place for the particular set of parameters
which have been chosen for oode checking, but in the first
significant place for some other set of parameters.

When the code is suspected of working correctly,

don'tb%%%%ein t0o such unsound suspicions--make sure'! Try
extreme valueshpronounoing a program O.K, 1t 1is
unfortunately true that programs which work perfectly
with the usual run of parameters, sometimes fall badly
on somewhat unusual parameters, which may nevertheless
occur in final productiorn runs. Division hang-up
failures are particular culprits in this respect.

A final run with D1 (or D7) and extensive print-out
is a wise precaution. The record of this run should be

filed along with other information concerning the

8-24

development of the program, and the file should be retained.,

When a program is finally working, 1t 1s desirable
to insert check sums with the use of X12 and, 1n the
case of long programs which have been 1input with X173
to obtain a sexadecimal dump of the program together
with the check sum using routine X16. This increases
the speed of input considerably.

With long runs, provision should be made Ior program
interruption (e.g. with X10), and no run of more than
about 15 minutes should be made unless the calculatiorn
is checked in some way. Although srror-free runs ol
meny hours afe usual with SILLIAC, occasionally faults
which cannot be tracked down guickly beoause of their
internmittent nature are present. When this happens,

errors induced by a machine fault will cause toa much
logss of time if this precaution is not observed.

A point about machine errors 1is that occasionally
obscure behaviour of a program during development may be
due to a machine fault. If, after a reasonable tTime,
you cannot see why the machine behaved 1n & certaln way,
repeat the run.

If the same thing happens twice in succession
it 18 almost certain that the fault is the coder's. If this
is not the case, do not omit to have the operator note
in the log book that the time of the previous run was
lost due to machine malfunctioning.

Remember that, in addition to the periods formally
set apart for code checking, it is possible to have a
"two-minute break-in" between any two problems as they
are taken from the queue. The purpose of this facility

is to enable p01nts arising during code development which
can be settled qulkly'to be handled without delay. To

3=-25

get the most out of this short period, considerable
streamlining of code-~checking technligues 1s necessary.

As well as these "two-minute break-ins" it is possible
to carry out development runs from the gueue of work
awalting processing. Once a routine is in a state for
D1 (or D7) to be used on it with profit, then
there is no reason why its development should not bve
handled in this way: and in fact, particularly with larger
programs in=an advanced state of development, this technique
should be adopted as normal procedure.

.16 CODE CHECKING DO'ss AND DON'T'S The following
list of suggestions for efficient code checking 1s

provi ded for quick reference:

1) Always stand well clear of $SILLIAC when
walting a turn for a code check.

(2) Always have any tapes more than about three
feet long wound up so that tThey can be read
into SILLIAC without tangling. Do not carry
tapes to the machine loose in 2 hopper

(3) When running a program more than once in the
one code check period (for example, it may be
desired to try several different values of the
parameters) the programmer's name should be
written the appropriate number of tTimes
on the cueue list on the blackboard provided.

r

The programmer should avold running the same

tape twice in succession through the reader, for
time 1s needed to wind 1t up agaln.

(4) The programmer should have the complete
instructions for running a test written out 1in

full. Attention may then be fully concentrated
on what SILLIAC does, and not on checking

8-26

(5)

(6)

(8)

(9)

procedure.

Read the instructions out to the operator and
let her put the tapes into the reader. This
speeds things up and leaves the programmer
more opportunity to watch the monitor screen
and order regilster.,

Have at hand a list of the locations of the
various parts of the program in sexademical as
well as decimal. When the machine stops on an
illegal order it can be immediately
determined whether its-location (read from the
order counter in sexadecimal) places 1t within
the program under test or out in an unused part
of the store.

Whenever SILLIAC stops on an illegal order note
immediately the function digits and the locatlion

of the order.

Imnmediately after leaving the machine after a
code check, wind up the tapes (using the table
on the far side of the room--not the operatore's
table), and leave the tape hopper in the SILLIAC
room for use by someone else during his code

check.
1f D1 {(or D7), or one of the type C checking

routines has been called for, the operator's copy of

the routine will s0 into The +ape hopper. Do
not walk off with the hopper before giving the
operator a chance to take it out and hang 1t back
on the rack. If an operator's copy of a tape 1s
taken by accident, do not delay in returning 1t--
shoneone nmay be waliting for 1t.

(Note: an operator's copy 1is

3=-27

coloured blue.) ,

Do not place anything on the operator's desk and
do not use the tape winder on the operator's desk
to wind tape--use the table on the other side

of the Toom or the one in the tape preparation
roon.,

LT a program development calls Ior a run

which should fairly certainly go through without
stopping and whidi wll take more then three
minutes total elapsed time, do not do it cduring
code checking periods. Write up the instructions
on the official form and hang it up on the
productior gqueue. (If the form is markead
Development, the programmer, of his Department
will be charged at the same rate as 1in code

checking periods.)

PURPORL ROUTINE

HOW USED

Investigate C3: signed 12-figurejlnput with bootstrap.2-diglt
contents of fractions, numbers from 0C to 9Y are on
INenory. 13: signed 5-figure |end of tape. If for example
fractions, we specify "T73" routine will
C4: signed integers ,|print locations 730 to 739.
CH: crder palrs with
| decimal addressed,
C9: floating decimal
5 nuupers .
? Investigate Cl: wuse with X1 Used in liew of D.0O.I. Prints
| changes from 12: use with X12 lout address of dilscrepancy,

original., te word on the tape and the
- word in the memory. FProgran
left ready for running.

Address search. {C6: all orders with|Input with bootstrap. Also !
giver address speci:y 3 character sexad. |

C7: only orders of address. Will print all ?

+ types 2,3 iorder pairs which use tThis

C8: only store Orderqaddressﬂ Restarting with |

& ' black switch repeats with %

, nddreas one less with C6,07,

| - , ‘or one more in case of 8,

C7 and C8 may be restarted

; | with white awitch to reaa

| lin new address.

P s —_———

= =" ‘amam . . e e Ay — W

[| |
Investigate last|{C10: use with AT :Input with bootstrap. Also |
integer inter-— or A4 specify 3 character sexad. i
pretive order andci1i1: wuse with A4 address of first word of g
contents of floaj- only jilnterpretive routine, Al or !
ing accumulator. Ad, {
Investigate D1 . Specification tape to ?
contents of store DY | indicatc the pointe and the E

* or registers at | printout required. D7 1is |

i specified pointw ore econonmical in storage |

gpace but not as simple TO
- use as D1.

during running
of a progran.

check routine. - required. D1H prints out
- details of final stop and
- control transfer orders
last obeyed. Operation of .
program under test is slowed!
. down twenty-fold. |

PERL - e mE e - ,— - = " —— - - —— - am

|
|
Control transfer | D15 ;A specification tape 1s

8~29

CHAPTER 9
TAPE PREPARATION

9.1 THE SILLIAC INPUT The input unit of the SILLIAC
is a photoelectric tape reader that transfers blnary digits

from a punched paper tape to the A register., The tape prep-
aration equipment is used to translate instructions and data
from the programmer's manuscript into a blnary-coded punched
tape acceptable to the SILLIAC.

9,2 THE SILLIAC OUTPUT. Output from the SILLIAC 1is
usually in the form of punched tape. This tape may be printed

on the Teletype page printer in the SILLIAC room, or the Tele-
type page printer in the tape preparation room. The page

printer performs a converslon from the five-hole code on the
tape to the characters on the printed page.

9.3 THE PERFORATED TAPF¥, THE SILLIAC TAPE CODE The tape
preparation eguipment described in this chapter consists of
Creed and Teletype equipment which has been modified to work
with the SILLIAC tape code. The paper tape can be puhched 1n
‘any one of the six positions across its width, one of these
positions (the feed or sprocket hole, which is smaller than

the others) always being punched. .
o The code is set out in Fig. 9.1, the order in which the
symbols are displayed corresponding to the view of the tape
obtained by an operator sitting at the keyboard of a Keyboard
perforator and looking to the left.

Teletype and Creed page printers are capable of inter-

preting the five 1nformation holes 1n a total of 62 different
ways by virtue of the fact that two of the 25 possible inter-
pretations of the five hole positions are reserved to mean:
"Change the code". According to which of these two codes

9=1

Character

~PMirst Hole
Third Hole

T Second Hole

s
e 23

P
.QHHHHHMHH

Notes:

Fourth Hole
— bifth Hole

1
s
VEVEVEVIIVEVIIVEY

(a)
(b)

(c)

Figure Shif®t Letter Shift

0(Zero) P
1 Q
2 W

3 B

4 R

5 T

s Y

f U

& 1

9 O

+ K

- S

N N

J J

F P

L L

Delay
2 T
Carr%age return & line feed
- B
Letter ohift

v

) A

/ X

opace
= | &
M

Figure Shift

' (prime) ~H
: C
x(multiplication) 72

Brase

x indicates the presence of a hole.

The table shows the canfiguration of holes
on the tape produced by a keyboard per-
forator, as viewed from the perforator.

Delay, Letter Shift, Figure Shift and Erase
cause no action of the Teleprinter or
Teletyype. |

Figure 9.1
Q=2

has been encountered last, the page printer will interpred
symbols as being in one of two codes, conventionally reserved
for "figures" and "letters". The two codes have accordingly
become known as "figure shift" and "letter shift", and, be-
cause of the mechanical construction of the page printers, the
five-bit combination used for "Iigure shif+" (which would nor-
mally only be reguired in letter shift) cannot be used for
anything else in figure shift, and muvatls mutandis with letter
shift. In fact, if the "figure shift" character is used when a
page printer is already in figure shift, there is no effect;
similarly, there is no effect if "letter shift" 1is used when &
page printer is already in letter shiit.

Tn the SILLIAC ccde, for convenience, eight other charac-
ters are common to both shifts, and so the total number of
different characters is, in fact, D54.

The first sixteen characters in figure shift are the nor-
mal sexadecimal code used in laboratory litercture with the
excoption that_ in older literature, 4 and — appear as K and
9, their letterashift eguivalents.

I+ is usual to refer to tie 10 sexadecimal characters

0-9 =28 punched on the tape as being in binary ccded decimal,
The reason for this is that, if we regard the hole positions
2s corresponding to 20, 21, 23 respectively, the coded form of
the digits is also their binary form. Note that in Fig. 9.1,
the codes are displayed so that the least significant digit 1is

written first, a practice which is of course the reverse of

the normal one.
There are three printer control characters. The first

causes the printer to space; the second causes the carriage
to return and the paper to be advanced one line, and the third
is a dwmmy character which merely serves as a delay. If the
carriage of a Teletype page printer is to be returned from

9-3

more than 20 characters from the left hand margin, it should
be followed by a delay code to allow enough time for the com-
plete return of the carriage to the left hand margin., Otfther-
wise, the next sexadecimal character would operate the
printer mechanism too soon, and print the character somewhere
out in the middle of the line. 1f the carriage is within

abeout 20 characters of the left margin, a delay code need

net be used after a carriage return and line feed code.

The format control codes have a character in the fifth

hole position. When a punched tape is placed in the SILLIAC
tape reader, the circuits cause any character with a hole 1in
the tifth position'tc be skipped (i.e. not read into the
computer) with a normal input order, (There is, however, a

special input order to read such a character - see the order

code.) This means that in the preparation of tape, these
format codes can be inmterspersed with sexadecimal order codes

in any desired way. Then, when an instruction tape 1s prin-
.t

in preparing instruction tapes 1is to follow each order palr

i

ocd these codes will control the printer. The usuval method

with a2 carriage return and line feed code., This produces a

single column print of words.

The ability to print letters and some other special
characters is useful for headings, and sometimes these codes
are used as special codes in input programs.

§.4 TAPE EDITING The several operations which one
wishes to perform, in handling the punched tape which forms
the input-output medium for SILLIAC, are as follows:

(a) preparation of a tape from a manuscript of
program or data in written form; '

(b) reperforation to produce & copy of an existing
tape with or without occasional corrections;

(¢) printing out the contents of a tape;

=4

(d) comparison of two tapes to detect errors;
(e) comparisbn of two tapes which may contain
errors, together with simultaneous production
of a third, correct, tape.
For performing these operations the following equipment
will be 1nitially provided;
(1) Teletype keyboard perforators and modified
Murray keyboard perforators;
(ii) Creed TTR/3 non-printing reperforators
(iii) Editing sets counsisting of Creed 54/N4 page-
printers, with reperforating attachments,
coupled to Creed 6S/5M transmitters;
(iv) Creed tape comparators:
(v) Teletype Model 28 receiving-only page-printers,
coupled to Teletype transmitters;
(vi) High-speed comparer-reperforator sets consisting
of two Ferranti ?hotoeleCtric tape readers, one
Teletype BRPE high-speed punch, and associated

electronic control circults,

9.5 DETAILS OF EQUIPMENT Of item (i) keyboard perfor-
ators, there are two Teletype and two Murray keyboard perfor-

ators., One of these keyboard perforators will be close to the

conputer itself, for use 1n preparing short lengths of tape
for immediate reading intc the computer, particularly during
maintenance and program checking procedures. The other key-
board perforators are lnstalled in the hand computing

machine room in the basement (G.16) and will be available for
use on operation (a), preparation of tape from manuscript.
This simple form of machine, which does no more than produce
a punched tape in response to manual operation of the key-
board, 1is satisfactory for use by an experienced operator, .
but lacks facilities which are & help to the general user.
For him it is a great convenlence to use the more elaborate

9=5

equipment of item (iii) which, simultaneously with producing
5 punched tape, produces also a printed record of what has

been punched,

Of item (ii), non-printing reperforator, one only will

[

be provided and this one will be used for the production oi
library tapes; it will be available for general use when

not reguired for this purpvose. The Creed machine used 1s
capable of punching two tapes simultaneously, and thils
facility will be used when library tapes are being produced.
In this case, one of the tapes will be a special long-life
tape of heavy grade which will be the library tape for
general use. The cother tape will be of ordinary grade, but
coloured green to distinguish it from ordinary tape; this
tape will form the master copy, which will be filed away for
use in producing a new llibrary tape when required. PFach
time a master tape is used to produce a new library tape, a
new master will also be produced, and the old master may be
discarded. In this way the file of master tapes should re-

maein always in first class condition,.
The equipment of item (iii) constitutes the normal means

for production and reproduction of tapes by the general user.
There will be two sets of this equipment initislly provided.
Additional sets may become necessary as the use of SILLIAC

increases, The set consists of a Creed Model 54/14 page

rinter with reperforating attachment, and a Creed 65/5M
transmitter, interconnected vila & junCtion box on which nec-
cssary control switches are mounted, By means of thls setv
eny of the operations (a), (b) and (c) as listed above may
be conveniently performed,

When a copy of a tape is produced by a reperforating
operation one does not trust the machines to be completely
free of error. Immediately after reperforation, the copy

9-6

and the original tape must be compared to check that they

do in fact agree., This may be done on a Creed comparator
(item (iv)), one of which will be associated with each set

of item (iii). The Creed comparator has two reading heads;
when two tapes are placed one 1n each of tnese reading heads,
and the machine is started, the tapes are read and compared
at 400 characters (i.e. rows of holes) per minute, until a
discrepancy between the two tapes appears. Upon detecting

such a discrepancy the machine stops. Tapes may also be

compared by means of the equipment of item (vi) as described
below,

When results are obtained from SILLIAC on punched tape
1t is generally necessary vo print out the contents of the
tape to obtain the results in readable form. This could be
done on the Creed equipment of item (iii), but since these
machines are likely to be 1n conslderable demand for the
production of program and data tapes, separate machines will
be provided for the sole purpose of printing out results.
These machines will be Teletype Model 28, receive-only, page
printers which operate at 600 characters per minute; two of
these will be provided, of which one will be placed close to
the computer and connected so that it may, when reguired,
receive results direct from the computer instead of from a
tape.

' The equipment listed above 1s all télegraph equipment
which has been slightly modified to suit the special needs

of a computing installation. In order to make use, in tape-
editing operations, of the higher speeds obtainable from
photoelectric tape readers and the Teletype BRPE punch as
used for i1nput and output on the computer itself, a unit
(item vi) has Dbeen designed using two Ferranti photoelectric

readers and one BRPE punch, together with necessary elec-

tronic control circuits, With this unit any of the
operations (b), (d) and (e) listed above, may be performed,

-1

and it will be the only equipment available for operation
(e). The speed of this unit will be 3600 characters per
minute when reperforating tape (nine times faster than the
Creed equipment), or 12,000 characters per minute when the
readers only are in use for tape comparison (thirty times
faster than the Creed equipment).

Operation (e) is useful particularly in the preparation
of long data tapes. Cne way to check such tapes is to print
them out and proof-read against the original manuscript;

but this process is both tedicus and unreliable. A pre-
ferred way is to punch the data twice and then to compare
the resulting twe tapes, simultaneously punching a third
tape so long as the two agree, but stopplng as soon as a
discrepancy appears. The correct character can tnen be

manually punched on the third tape, and the process of com-

parison and reperforation resumed. At the end of the pro-
cess a correct tape should be available; this tape however

should again be checked by comparison with one of the Tirst
two tapes.

9,6 HOLLERITH CARD-TO-TAPE CONVERTER AND NATIONAL
ADD PUNCH The laboratory has recently (November, 1958) ac-
quired a Hollerith punched card to paper tape converter, and

expects to have an adding machine with punched paper tape
attachment early in 1959.

Alsc, it is expected that a verifier will be made
available from C.S.I.R.0. earliy in 1959. This equipment will
compare the character corresponding to a depressed kKey with
5 correspornding one on a punched paper tape. If they agree,
the character will be punched on 2 second punched paper tape.

If they disagree, the equipment will indicate the disagree-
ment and the operator must then choose the correct one,

Literature will be issued to describe the use of these
¥ tens of equipnent a2s soon &8 possible affer they are
available for use. (See also section 9.18.)

9-3

9.7 XEY BOARD OF TELEPRINTER MODEL 54 . The rest of
this o hapter is concerned with detalled operating instructions
for the main items of equipment which have been described
briefly in the preceding sections (viz. (iii) and (vi)).

The most frequently used keys of the teleprinter Model

54 (except zero key which is the centre front pad) are in

red, |
A combination of holes on the punched paper tape (called
2. character) will cause a printer to punch one of two charac-

ters according to whether the printer 1s 1in Letter ohift or
marked LTRS) has the effect of

4
\
S'I

Figure Shift. One character

changing a printer to Letter Shift, and one character (marked

FIGS) has the effect of changing the printer to Figure Shift.
In general, where twofsymbols are marked on a key, the upper
symbol will be printed if the printer is in Figure Shift, the
- lower symbol if it is in Letter Shift. Characters which
result in the same symbol 1n both shifts have onnly that sym-
bol on the correSponding kKey.

In most input routines 1t does not matter in which shift
the character concerned 1is referred to. In particular K and
+ are interchangeable, as are o and -,

The two space keys cause the same character (which will
cause a printer to space without printing) to be punched on
tepe. A similar remark applies to the two Carriage-Return/
Line Feed keys (marked %%J. Note that the character corres-
ponding to 1 (one) is obtained by présging the kKey marked &,
and not §. Similarly, the character corresponding to O (zero)

1s obtained by pressing the centre pad marked‘%, and not the
Key marked g. .
Most programs ignore ancillary characters on input (in

fact they ignore any character with o hole in the fifth

9-9

position -- i.e.,, the hole in the rearmost position as

punched). This means that the operator can choose any form

of layout according to his own preference,

The RUN-OUT key to the right and aboVe the keybdard,
when depressed, causes c0ntinuous punching of the last char-
acter punched, About eight or nine inches of tape shoulid be
run out on Delay characters (see next paragraph) at the be-
ginning of every tape, followed by a Carriage-Return/Line-
Feed and about two inches cof Figure'Shifts and then a final
CR/LF followed by a2 delay. The tape should be terminated by
about two inches of CR/LF's 2nd run out on delays, the

CR/LF's ensuring that hthe printed version 1s clear of the
&

shield on the Teleprinter. Tape should always be cut with
the scissors available so that the leader is pointed in the
forward direction. This and the easily recognizable sectlons
of tape punched with Figure Shifts and CR/LF's serve to label
the beginning and end of the tape respectively, and so
help to prevent the otherwise easily committed error of
placing the tape in a reader wrong end first.
After every CR/LF throughout the text, it is advisable
to punch a delay character. Thilis character has the action
of wasting one cycle of the printer, thereby'ensuring'that
the carriage, which takes a finite time to return, 1is back
in the initial position before the next character is printed.
Characters entered from the key+board will appear on the
printed sheet in red, characters printed from tape run through
the tape transmitter (see below) will appear in black.- Note
that the punch is cperated by bowden cables from the printer
mechanism and so & punching error may occur 1ln some cases
even though the printed text appears correct. To avoid this
possibility going unnoticed, visual checks should be made
from a separately printed copy of the'perforated tape.

9-10

The erase key has the effect of punching five holes

across the tape. It is used in conjunction with the BACK

SPACE key (seec next section) to negate the effect of in-
correct punching. Having a hole in the fifth character
position, it is ignored by most routines on input,

3.8 UNCH CCNTROL OF TELEERINTER TYPE 54. 1f the cover
to the left of the key-board is lifted, the punch becomes

visible. The last character punched can just be seen beyond
the punch block and this can be recognized from the attached

list of characters, To the left is the BACK SPACE KEY,
This must be firmly depressed in order to ensure correct ac-

tion, and mocreover it is usually wise to check by inspectlon

that the action has occurred correctly. 1t is usually used

in conjunction with the ERADE key mentloned above. The met-
2l lever to the right is the PUNCH CONTRCL LEVER, and has
two positions: if pressed fully tothe left (the INHIBIT
position), 1t results in the tape punch being inhibited; 1
pressed fully to the right (the PUNCH position) it results
in the tape punch being rendered operative. Printing occurs

regardless of the setting of this lever.
9.10 TAPE TRANSMITTER. To the left of the teleprinter
is Tape Transmitter Model 6S/5M with the Control Panel moun-

ted above it. On the base ¢f the Tane Transmitter is the
ON/OFF switch (OFF-up, ON-cdown). This switch should be
turned on only when the transmitter 1s actuelly in use. To
insert the tape in the transmitter GATE the RETAINING CATCH
should be pushed to the right and the GATE lifted. The tape
should then be inserted and register with the SPROCKET DRIVE
ensured., The GATE should then be closed and the action of
the CATCH checked., The easiest way of dolng this is to

ensure that it is not possible to raise the GATE.
Tne tape should be fed under the TAUT TAPE LEVER to the
right of the GATE and over the GUIDE immedlately to the

il weples s e =riglisad b S nlmppesilengifer -y

Note: There i1s no section ngm?$red 9.9,

right of the TAUT TAPE LEVER, Note that raising the TAUT
TAPE LEVER will Stop the transmitter. Also, when the end
of the tape has run through the reader, an END-OF-TAPE~
SENSING-DEVICE will cause the transmitter to stop. Thils 1s
located under the GATE, '
The character about to be read can be seen by lookKing
5t the GATE from above. The READING PECKERS will show
through any holes on the charactér about to be read, since

they are darker than the transmitter plate which shows
through the holes of neighbouring characters. The character
about to be read will be immediately to the right of tne
reised section of the grid of the GATE.

9,11 EDITING STATION CONTROL UNIT. This is mounted on
top of the tape transmitter and has a SWITCH and a KEY. The
SWITCH is an ON/OFF SWITCH. The KEY has three positions:
in its central position.(MANUAL),it allows tape to be punched
from the key board; in its upper position (AUTO) it will
cause tape to be copied from the transmitter; 1in its lower
position (SINGLE SHOT) it will cause re-perforation to take
place one character at a time.

9,12 NOTE ON CORRECTION OF TAPE, If the correction of
o, character requires merely the insertion of another hole,

this can be carried out by back spacing the tape until the
character concerned is directly under the punch and then
puriching the character. Alternatively, the ONE-HOLE PUNCH
can.be'used.

9,13 SPECIAL REMINDERS, WHEN THE TAPE BEING PERFORATED
IS RED, CALL THE PROGRAM LIBRARIAN OR ANY OTHER MEMBER OF THE
LARBORATORY STAFF. This is an indication that the tape supply

is running out.

TURN OFF CONTROL UNIT AND TRANSMITTER ON/OFF SWITCHES WHEN
FINISHED.

- 9-12

TURN ON TRANSMITTER ONLY WHEN REPERFORATION REQUIRED.

REPORT ALL MALFUNCTIONINGS TO THE PROGRAM LIBRARIAN OR ANY
OTHER MEMBER OF THE LABORATORY STAFF.

9.14 HSAMPLE OPERATIONSFOF;EDITING_SETS;
runching - |
CONTROL UNIT ON/OFF switch to ON,

CONTROL UNIT KEY to MANUAL,
Ensure PUNCH CONTROL LEVER in PUNCH position.
Use Keyboard as éxplained a.pove.,
To Correct an Error with ERASE KEY
BACKSPACE the tape until the character concerned 1s

under punch (i.e. has just disappeared). Press ERASE key.
If subsequent characters are satisfactory and it 1s desired
to advance tape without causing any cther eifect, press g pad
until last character punched 1s just visible. -
To Copy Tape Correcting a Single Character

CONTROL UNIT ON/OFF SWITCH to ON.

TRANSMITTER TO ON. '

CONTROL UNIT KEY to MANUAL.

Insert tape in GATE.

Check that PUNCH CONTROL LEVER 1s in OPERATE position.

Run out leader as instructed above,

CONTROL UNIT KEY to AUTO.

- Check from printed copy when proposed correction 1s

drawing near, At this point, place CONTROL UNIT KEY 1in
MANUAL position, and then use SINGLE SHOT facility until in-

correct character is about to be read,
PUNCH CONTROL LEVER to INHIBIT position.
CONTROL UWIT KEY to SINGLE SHOT.
PUNCH CONTROL SWITCH to OPERATE position. _
With CONTROL UNIT KEY in IANUAL, insert correct
character from keyboard,

9=-13

Set CONTROL UNIT KEY to AUTO to continue reperforation.

A tape reperforated in this way should be checked
against the original in one of the comparators.

9.15 HIGH-SPEED COMPARER-REPERFORATOR DESCRIPTION AND
OPERATING INSTRUCTIONS: INTRODUCTION. Many people who have
used the telegraph-type equipment for the preparation of

-

tapes for SILLIAC will have been exasperated by 1ts slowness,
The equipment here described has been constructed to speed
up some, at least, of the operations, by taking advantage of
the higher speeds obtalnable from the photoelectric tape
reader, and high-speed punch, of the kind used for SILLIAC
input and output.-

The equipment consists of two tape readers and one tape
punch, together with the necessary circuilts to link these
units together so as to perform several possible operations,

These operations include: reperforation, using either reader
together with the punch; comparison, using both readers;
and, using all three units, the comparison of two tapes with
simultaneous perforation of a third tape so long as the two
initial tapes agrece, Controls are provided to facilitate
editing operations such as changing, adding, or deleting
characters during a reperforation process.,.

9,16 REGISTERS AND CONTROLS. Two registers, one
assoclated with each reader, and a2 third reglster between

them, have their contents displayed on neon lights on the
front of the machine. The two reader registers are always
set to delay characters when the machine is first turned on,
and they may be set manually to any other characters by
means of the push buttons'provided; otherwise they always
display the last characters read by the corresponding
readers.

The third register is also set to a delay character on
turn-on., It is called the punch register since 1t 1s

9=14

primarily concerned with the punch. When the punch 1s in
use, the punch register displays the last character punched.
When the punch is not in use, i.e. during comparison of two
tapes, the punch register is still used. In this case it
displays the last character which has been successfully com-
pared in the two reader registers,

On the main control vanel & FUNCTICN SWITCH is provided,

by means oI which any one of four modes of operation may be

selected, These are as follows:
1. COMEFARE
. COMPARE & REPERFORATE
3. MaANUAL PUNCH from selected register
4, REPERFORATE from selected reader.
Operation of the equipment in each of these four modes

AW

is described in some detail in the following sections. ,

As well as the FUNCTION SWITCH there are a number of
other controls, which are all necessary in order to give the
machine the desired flexibility, but which make it necessary
to proceed with care if the correct resﬁlts are To be ob-
talned., |

There is a switch with labels S/BY, ON. The equipment
1s normally left connected to the power 2ll day, with the

switch turned to standby (S/BY) when the equipment is not in

use., It 1s then ready for use immedistely the switch is
turned to ON., Tapes should not be placed in the readers
while the switch 1s on S/BY, since the reader brakes are not
operating, and the tapes will tend o driftlthrough. It is
important that the switch be returned to S/BY after use.
There are alsc power switches on each reader, and on the

puncn, These switches IUST NOT be turned off. Such action
mey cause inconvenience to other users, and moreover, as the
switches control blowers in the readers, may lead to over-

heating., This point is stressed particularly, because it is

9-15

different from the procedure requested for the other tape-
preparation machines, where 1% is important that the user
should turn off the power switches after he has finished.
When reperforating, either reader may be selected Dby

means of the switch labelled SELECT and the reader may be
caused to reazd all characters, to skip over erase charac-
ters, or to skip over all 5th-hole characters, according to
the setting of the SKIP SWITCH. The normal setting for the
skip switch is positicn 2, SKIP ERASE, since erase charac-

ters are not normally wanted on a finished tape. The sKip
switch performs the same function when comparing, SO that,
for example, a2 tape which has been reperforated with deletlon
of erase characters may be compared with the criginal wilithout
stoppages, except on actual errors.

For the purvose of deleting unwanted characters during
reperforation, or of bringing two tapcs intoe step during
comparison, each reader is provided wlih & JUMP BUTTON,

These buttons are located just under the shelf in front of
cach reader. When one of these buttons is pressed the reader
concerned advances to the next wanted character, as deter-
mined by the setting of the skip switch, and reads this
character into the corresponding register, but no other actlon
takes place. '

The punch is, of course, provided witnh a run-out button

for the purvose of running out a section of tape punched
with delay characters. This button is located on the punch

housing. ,
The remaining controls are the three push buttons

labelled 1-SHOT, RUN and STOP respectively, on the main panel.

Since these labels are almost self explanatory the user should

be able from what hoas already been said, to carry out straight-
forward reperforation and comparison operations. However, for

the correct performance of editing operations, including the

9-16

changing, deleting, or adding of characters whlle reper-
forating, 1t 1s necessary'to know exactly the unit operation
for each of the four functions selected by the FUNCTION
OWITCH., By the unit operation one means that operation

which occurs just once each time the 1-SHOT button 1s
pressed, or occurs continually after pressing and releasing
the RUN button. T+ is set out, for each of the four cases,
in the next section.

9,17 THE UNIT CPERATION. For the first case, CUMPARE,

the unit operation is as follows:

The two characters standing in the two reader registers
are compared., If they diffsr, no action<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>