PROGRAMMING
MANUAL

SCHOOL OF PHYSICS

THE UNIVERSITY OF SYDNEY

ADOLPH BASSER
DIGITAT COMPUTING LABORATORY

SILLIAC PROGRAMMING

A Guide to the Preparation of FProblems
for Wolution bhy
the Automatic Digital Computer
in the Adolph Basser Computlng Laboratory
within the School cf Physics
of the University ol Sydney

Second BEdition

DY DNEY
Jarmuary, 1959.

PREFACE

The Adolph Basser Coumputing Laboratory has been set up
with funds donated to the [uclear Research Foundatlion by
Dr. Adolph Basser, C.B.&., Governor of the Fouundation. The
Laboratory is equipped with a hilgh speed auvtomatic computer
which is an almost exact copy of the mutomatlc comutter at the
University of Illincis, the ILLIAC, and as 1t is the oydney
version of the ILLIAC, it has been called the SLILLIAC,

One of the fortunate results of the generous assigstance
given by the Digital Computer Laboratory at the University of
Tllinois is that we in Sydney have been givern a flying start
by being able to taeke over the wnrogram library developed aTt
T1llinois. Moreover, we have been able to profit from the wide
teaching experience of the group at lLllincis as embodied 1n the
ILLIAC programming manual; and, in fact, with minor alterations
only, this handboolk is a direct copy of the ILLIAC programmlrig
manual. We would like to express our gratitude here for
permigsion o make thils copy.

The original manual was the result of a group effort by
many different people, and chaplters were written by o. GIilld,
E. L. Meagher», D. E. Muller, J. P, Nash, J. L. Robertson,

T. Shapin and D. J. Wheeler.

PREFAC.
EDITION

L4

3
O
w2
=
@
G
=
-

L

Towards the end of 1958, several new orders were

introduced invo the SLLLLIAT code. At the same time, the

state of The old stencils was such that they could not

be used for producing further coples cf the first edition.

Accordingly . the opportunity was taken To revise the first

edition, many secticns belng expended considerably. Contri-

butors to this new edition include J., M, Bennett,
B. A, Chartres 6 NMiss Joy EBllictt, B. E. Swire and R. Whitfeld.
The typing of the steuncils was carried out by Miss ILena

-

Irachtenberg.,

PREFACTE
PRELAC L 1O

g

STCOND

CONTINTS

&
EDLT .

g

Chaoter 1.

Chapter

Chapter

AN

21
<12

i)

L HE

INTRODUCT LON

T LON

TS T TN T {31 T
ARTTHW T 10

L

v L a
L o o
y o o

oL LLLLC

fundenent
nI‘l'L P

i

Jid L

{2
‘.
I!
¢

M "he

[N -

Additions
Subtracti

Absolute

lnereuen®
Ladd Fron

The

a1l (O
Jetlic Lunu:

Representation of

oy Y

...j LS LF

tion of the SILLLIAC

-}

[

J.JDE"I\:} ¢ °

L] o Ly :

AC Arithnetic Uit ,

O Yl

Value Addit:on

L |

Aaod

ot

IIF‘-.'I - .
o] £ d
vt iy Ld

Ord

Shift Orders

Multiplication -

Division

S

v

RS

o d

¢) o
L - »
a o

Subtraction

Increment Adua Trou (

Precise Calculation of the Division

lenialinder

The Divis
Division

WMenory to 4 and otore 1

L1dustradt

L

ilov Hangup.

-

Ve

[~

e e
EXE‘::?L.LJL L&.Le 5

Integer Onerations

SULLATLY

i I-I"f'
L

T 1A

The NMakeu

h-q‘

Lnout

an d

-

ORDIER CODER

» of

out:

-

o

opeclal vase

ITnstructions

sut Orders o .

S

111

AN N
: |
N \J1

\J
|
O

hxecutlicn of Orders .,

Modificaticrn of Acaresses

Null Order o . .

o>top Qrder . , ,

Left Shift . . .

Right bhift . . .

Unconditional GComtrol Trans:

- k-

Londitio
Modificae

N
tion,

, -!L —tO Stcre & o a

>Store to Q0 . ; ,
Divide . . . :
Multiply : : :

4-Tevel Input/Output

Magnetic Tape Orders

S5-Level Input/Outout

Magnetlic Tane Orders

Increment Add from Q

Add frowm Q@ « . .
Q to otore - o
Collate in Q o o

=

Increment Add frou Store

Add from Store . o

=]

Cer

- &

¢

a2l Control Tranafer9 Address
Null Orders

4]

List of the Most Cormionly used Orders

Abbreviated Order Lis®

3-43

Chapter 4. ROUTINES , : .., :

Chapter

4

Ul I Jdr I B

\J)

AR

Sy IR G2 B

O

.1 Closed dubroutines . o . . ;
.2 Entering a Closed Subroutine ; :
.3 Returning Control to the Master Houtine
.4 Placing the Arguient , : : :
.5 Prograi. Paraireters . : . . o
.6 Interpretive Routines : | ﬂ :
.{ Preset Paraiveters o : , , .
. THE . DECIMAL ORD¥ER INPUT o . .
.1 Relative and Mixed Addresses a ,
.2 Directives . . . : : . .
.3 Asseubling of Orders . , ﬂ :
4 Deciial Addresses , : : : :
.5 Dtarting the Prograu : . . :

Input of Decital Fractions

O
. { Pre—-get Parcireters., WModification of

& & =

",

o e 4,

A=

: : :
Lnout .
. : .
& - &
. : .

Orders . , : c ;
.3 HExarple of Use of DecimalIOrder Input
.9 Use with LInterludes. Retalned Directive
10 Stopping the Tape : :
.11 Placing the Deciral Order
Bootstrans . . : :
12 5 Paraveters as Directives
.13 Modifieation of RHoutvines
14 Storing Routines in Seguential Locations
.15 S-=Directives c : :

16 Sur: Check Facility . |

I l
N —a

I
(W

B S S U - U N
{ I
N

N N 2 A L A L S)
| l I
A,

I
O R

\
|
0N

H=06

H~20
H=22

Chapter

Chanter

5.17 Floating Addresses and'“agged Orders .

)
6 .
0

7.3

oCA LING ; : :

ocaling by Shifting .

Nuizbers with the Binary
Scaling a Full ProbleL

Adjustable Scaling Facto

-

.13 Methods of Entering the D.O.I. .

L
o & 0 "
Lo 2 L o

Point Shifted

-4 > it L

r's o o o

Contiruous Scaling. Floating Point

Sie
4

Houtines

& o ¢

L ¢ a &

MACHINE NMETHODS AND CODIRG TRICKS .

"

Heversing The Control Trens:

Binary Switchnes .

T -4
Lesy

for O and -1 .

(2

Use o1 Orders and Addres

Hegettling and btarting o
Orders . ; . :

_~
»

Use 01
Interchange s . .

Prooucts

Car . .
ses aa Corstant s

i Cycles of

o

the Quotient Register for

0 2 &

Testing 1if MNunbers are Greater than

Cne-Half . . . : . : .
Convergence Criteria , : . :
Marking . . . o o . .
Rerneinder in lInteger Divisioﬁ o :
Binary Choppling : : : \ :
EBvaluation of Polynouinlsg . : ﬂ

—

Logical Operations on ol

LLIAC

Printing of oigns in Print toutines .

H—=25
5-36

=10

7-11
=11
=12
=13
T=14
=15
7-16
T~17

Chapter 8. CODE CHECKING METHODS 81

c.1 What to Do Before Starting Coding , . 8-1

8.2 What to Do While Codine . C ., , 8-=2

5.3 Sources of Informaticn . . : , 3-5
o.4 Blocking Orders . : , : : \ . O=T
8.5 (There is no section 8.5)

8.6 Types of “Yhecking Routines O=08

o
~J

Post Mortern Routines - . . , ﬂ . 8-0

3.8 Post Morter. Version of Deciral Order

Input Routines . . , \ : : . 8~10
3.9 The Address Search Routine . : : . O~=12
.10 Interpretive Ro. tine Post NMorteis , . O-12
B.11 Control Transfer Check . : : : . O0=13
3.12 The Check Point Routine . : : , . 8-123

S.13 What to Do Before a Code Check Run . . O~-14

6.14 What to Do (and Not to Do)kDuring Code

Glﬁlﬁc}z RUEE ” . o o o e ¢ e 8 "_1 9

0,15 Additional Hints . : : . : . 8-23

.16 Code Checking Do's and Doun't's . . . 826
hapter 9. LAPE PREPARATION . . ; : : . 91
9.1 The SILLIAC Input . . . : .. 91

9.2 The SILLIAC OCutput g1

9.3 The Perforated Tav ' i 2
COde & o o o ™ o ® . o 9_—']

ot
®
R
-3
G

Ie
®
-
J
S
O
o
|
-
-
=
-
=

=

&

RS
®

9.4 Tape Dditing Y o Y

9.0 Detalls of Eguilipnent : . : . 9-5

9.19

10
10.1

10 .2

Hollerith Card-to-Tape Converter and
National Aad Puncihr . : : o

Keyvboard of Tsleprinter licdel 54

ey

(There is no section 9.C

Tape Transiitter : : : :
Editing Station Control Unit .
Note on Correction ¢f Tape . :
Special Rerinders . . . ;

Saitiple Operations of Editing »nets

High-Speed Conparer-Reperforator
Description and Operating lunstructions
Introduction : | . : . :
Registers and “Yontrol . , : .
The Unit Operation . : : | :
General Operating Hints . . . :
Recovery froi. Mlshandling :) :

Sainlie Ouerations of Couparer-

Reperforator : : , , :
L Few Reidnters . : : ; :
Printing Layout . . ; u :
The N;C.R. Recording Adder . . .
SATICTUL UL RO T .
ey |
Crder Tine . : : : . :

Examnle of Running Tiie Calculation

10.3 A Siuple RHunning Tine Foruula .

Punch Control of Telesprinter type 54

O=-12
9-1¢

o-=13

10~1

.10-1
10~2

. 10-4

Chapter 11,

Chapter

11.1
11.2

1143
1.4
11.5
11.6
1.7
11.9

11.9
11..10

11,117
11,12

11,13

12,
12, 1
12,2
12,3
12, 4
12,5
12,6
12,7

A STMPLIFIED CODING SCHEME ., .,

Preparation of Instructions . .

Table of Instructions Understood
by Program A9 . . .+ .+ .« .

Repeated Operations e e e
Moaifications of Addresses .

D&ta 4 ® L & L ¢ & L L

Additional Loop Instructions .

Example of Use of Program A9 .
Operating A9 e e e e e s

Using the Diagnostic Routiline

To Operate the Diagnostic
ROUt il’le . é » & » ® * »

Layout of Store for A9 . . .

Fxceeding Capacity and Other
Effects . .+ «+ « o« « < e

Storage Space Available for the
User's Program and Data . . .

THE MAGNETIC TAPL HSTORE , . .

General Description . . .

Timing and Spacing on the Tape .

Details of the Word on Tape . .

ot orage Capacity e e s e

Control of the Tape . .« . .

Address

Digits in Tape Orders .

The Recording Process « o« o o

11-1
11-=-1

112
11-4
11=-6
117
11-8
11-10
11=12
11=-12

11-73
11-14

11-16

11=16

Chapter

12,8

12,9

12,10
12,11
12,12

12,13

12, 14
12.15
12,16

12,17

12,18

12.19

12,20

12,21

12,22

13,

13.1
13.2
13.3
13.4

13,5

13. 6

The Limit on Block Length ,. .,

The Playback Process e e .
Termination of Playback] .

The Search Process

Rewj.nd e & ¢ .i ¢ ¢ o L

Re-recording of Blocks . ., ‘

Eng-of-Tape Sensing

Manual Controls

Avallability of the Tape Store
to SILLIAC, Equipment Hang-Ups.

Diagnosing a Common Programming
Error ¢ o e e e ‘

File Tapes and Working Tapes
Checking for Tape Errors . .

come Typical Magnetic Tape
Routines . ' e ‘ ; ‘

Routines for Checking Tape
Labels ‘ ¢

Magnetic Tape Bootstraps . ‘

THE PROGRAM LIBRARY . . .

Input Routines ‘ . . .
Output Routines . - . .
Functional Routines . ‘ ‘
Problem-solving Routines .
Interpretive Routines , : .

Checking Routines . . : ‘

12=22
12=23

1228
12~31
12-34
12-36
12-38

12-40

1245
1046
12-52

10-54

12-65
12=T70

13=2

Chapter

Appendlx

Appendix

Appendilx

Appendix

Index,

1367

14.

1L,

I1T.

1V,

Summary ; . . . 13-3

DEFINITION OF TERMS . 4=

BINARY AND SEXADBECIMAL
NUMBERS AND THEIR
MANIPULAT ION ' . I-7

TABLE OF POWERS OF 2

SEFUL CONSTANTS

READ AROUND RATIO ., ., TIV-1

CHAPTER 1
INTRODUCTION

In 1953 the Physics Department of the University of
ocydney began to look into the possibility of acquiring an
automatic digital computer. At the time, it was clear
that the most satisfactory way of going about this was to
copy a machine of proven design, so that as much use as
possible could be made of existing experience, '

The funds for setting up the orgenisatlion necessary
for constructing a machine were made available by Dr.
Adolph Basser, C.B.E., Governor of the Nuclear Research
Foundation, and this organisation is now known as the
Adolph Basser Computing Laboratory within the School of
Fhysics of the University of Sydney. '

' At the time a careful survey was carried out of
machines in operation throughout the world which might be
suitable for carrying out the type of computation antici-
pated. The machine most suited to this class of work was
the type operating at the Digital Computing Laboratory of
the University of Illinois, the ILLIAC, and thanks to the
co-operation of this Laboratory, circuit diagrams of this
machine were made avallable., These, with only minor
modifications, were used for constructing the machine which
has become known as the SILLIAC (Sydney version of the
University of ILLInois Automatic Computer).

The University of Illinois machine was one of two
machines built at the University of Illinois Digital
Computer Laboratory, the other having been constructed under
contract for the U.>5. Army, Work on.these'two machines was
begun shortly after the foundation of the Laboratory in
February, 1949, and the first machine to be completed,
called the ORDVAC, has been in use at Aberdeen since
February, 1952. The ILLIAC was completed in September, 1952,

1N

The SILLIAC 1s an automatic electronic digital
computer,

1t 1s digital because 1t handles numbers as sets of
digits which have discrete values, rather than as scale
readings or measurements, which are contlnuously variable,
Apparatus for handling digits is more complicated than that
for handling continuous quantities, but it is capable of
giving unlimited accuracy by using sulitable numbers of
digits. '

The SILLIAC is electronic, In the last ten years
electronic circults ror storing, transmitting, adding,

subtracting, multiplying and dividing numbers in digital
form at extremely high speeds have been devised, The
addition of two numbers in the SILLIAC takes only about 75
microseconds.,

such speed 1s useless unless the machine can be made
to go anead on its own with many thousands of operations,

without human intervention., The SILLIAC is therefore
automatic, in the sense that it can be civen orders telling
it how to proceed, and will then act on these orders
automatically, _

In common with many other computers of a similar type,

the SILLIAC contains the followlng five essential features:

(1) An arithmetic unit.
(2) A memory or store.

(3) Devices for the input and output of
information (e.g. numbers) to and
from the machine,

(4) Means for the transfer of informetion
between the wvarious parts of the machine,

(5) Means for the auvtomatic control of the
whole mechine., |

The arithmetic unit carries out the individuallarithmetical

1-2

operations that make up every computation; it can be thought
of as the electronic equivalent of a desk calculating
machine, It is described in detail in Chapter 2.

The memory is needed because, in any lengthy
calculation, numbers produced at early stages of the
calculation are frequently required to be used at later
stages; they must therefore be recorded or “"remembered".

The memory is capable of recording 1024 numbers, These can
be recorded (i.e., transferred to the memory from the arithme-
tic unit) individuaelly, as directed by the computer's

control device, and recalled again individually in & similar
way, The memory may be thought ol as 1024 1ittle boxes or
locations, each accommoditing one number, snd labelled with
the numbers O through 1023. The label of a location 1s
called its address. A number in the memory is identiriled

by the address of the location containing 1it.

Information enters and leaves the SILLIAC coded 1n the
form of a pattern of holes in punched paper tape; there is
a tape reader for input, ana an automatic punch for output.
There is also & teletypewriter which can be used to proviade
output from the machine directly in printed form, Several
machines are available for preparing punched tape, copying
it, comparing it, and producing printed versiomns of the

information on it.

The problem of controlling the whole computer has been
solved by stipulating that every individual operation that
occurs within the machine must be one of a certain set of

specified permissible operations, and that no two such
operations can occur simultaneously. Thus the deslign
problem was reduced to that of engineering the various
permissible operations and arranging for tﬁem.to be
executed in any desired sequence, It 1s up to the user of
the SILLIAC to specify the sequence ol operations or

1-3

program, which the SILLIAC must execute to carry out his
calculation.
bach permissible operation can be specified in &

concise coded form called an order, The correspondence

between the set of permissible operations and the set of

orders which specify them is called the order code of the
SILLIAC, It is given in detail in Chapter 3., A coded
problem is called a program or routine.

The machine's control unit has the task of accepting

i

orders one by one, and of

causing the machine to carry out

the operations specified according to the order code, If

eacn order were taken by the control unit directly from =
punched tape, then to make full use of the speed of the
rest ol the machine the tape would have to pass through the
tape reader =t about 200 miles per hour. Instead, the
orders are recorded in the memory along with the numbers,

SO0 that the control unit merely has to take its orders from
the memory, which 1t can do electronically at high speed.
This 1s made possible by coding each order 1o look like s
number, To be more precise, orders are stored in pairs,
one palr to a memory location., The informetion contained

in one memory location is often called a word, meaning
elther a number or an order pair. Of course, the more
orders there are in the memory, the less room there is for

numbers, Both orders and numbers are fed into the machine
initially on punched tape,

Normally orders are obeyed by the control unit in
the sequence in which they are stored in the memory, ¢.£.:

Left-hand order in location 6,
Right-hand order in location 6,
Left-hand order in location 1,
Right-hand order in location 7,

Left-hand order in location 8, etc,

14

Sometimes, however, this sequence is broken and the control
unit starts over at some new position in the memory; this
is called a transfer of control. There are specilal orders
which cause this. There is also special provision for
making a transfer of control depend on the value of some
number obtained by the machine during the calculation,

Thus the machine can be made to "choose" one of two or more

alternative courses of action according to the way things
happen to work out,

If control is transferred a few locations back in the
memory, the machine will repeat the operations specified
by the intervening orders., 1t 1s possible to cause this
repetition to occur any number of times, leading to a cyclic
behaviour of the machine. Yractically every calculation which
the machine performs contains several such cycles, often one
inside another. In this way i+t often happens that the same
order gets carried out many thousands of times, so that s
few orders suffice 1o keep the machine busy for seversl

minutes, If exch order in the memory were to be carried
out once only, the SILLIAC would zet through them all in a
quarter of a second (even if the memory contained nothing
but orders)., In practice, calculations vary in duration
from a minute to a few hours.,.

The occurrence of cycles is one of the things that
complicates the programming of 2 calculation, Another 1s
the fact that, since orders are stored in the memory in the
same form as numbers, they can be operated on and altered
during the course of & calculation (at the behest of other
orders) just as if they were numbers, All this makes

possible some most interesting calculations; 1t can also
make programming difficult,

Fortunately a coder can often, as described in Chapter
4, make use of bits of programming done by other people.

1=5

Thus, a typical program consists of a number of groups of
orders, some written by the coder, others already available.
The latter will be available in punched tape form, and can
be copled mechanically onto the program tape along with the

new orders, Tape preparation is described in Chapter 9,

When the whole tape for a particular program has been
prepared, 1t can be placed in the tape reader of the SILLIAC,.
The SILLIAC reads the tape, forms the orders and numbers
punched on 1t and stores them in the memory. When the
program 1is 1in the memory, the machlne begins to execute the
orders, continuing until it comes to some particular order
which causes 1t to stop. I1f the programming is correct, this
is the end of the calculaticn. 1f there 1s a mistake in the
programming, various things may happen; remedies are
discussed in Chapter 8,

somewhere 1n the program will be some orders which
cause the machine to punch some output tape. Thils carries
the resulis of the calculation., The program may a2l1so
contain orders causing the machine to read more input tape,
carrying data for the calculation,

The reading of most of the program tape is accomplished
by the SILLIAC executing a particular set of orders called
the Decimal Order Input (see Chapter 5) which is always
punched at the beginning of every program tape and hence
the tape. The
Decimal Order Input not only assembles the program inside

N

read into the machine before the rest of

the machine; it also makes certain modifications and
conversions, so that the way in which orders are represented
when punched is somewhat different from their final form in
the memory. The object is to make programming easier. 1t
is d1mportant to remember that the written form of an order

and the form which 1t assumes in the memory are not the same

1-6

thing, The relationship between the two is determined by
the Decimal Order Input.

Remaining chapters of this manual are devoted to: the
arrangement of calculations so that all the numbers
encountered are the right size (Chapter 6); ways of
programming certain types of simple tasks (Chapter 7)3 how
to0 estimate the duration of a calculation (Chapter 10); a
simplified coding scheme (Chapter 11); and how the progranm
library is organized (Chapter 13). Finally, concise
descriptions of the principal contents of this collection
are given, |

S+ srred sections in this handbooir may be omitied at
first reading. MoOreover, anyone who wishes merely To
carry out a small calculatiou with the aid of SILLIAC 1s
advised to proceed directly to Chapter 11, where detaills
of a siwnlified coding schewe will Dbe found. Lven 1T the
reader intends to make extensive use of tlie machine, he
should, at an early stage, code a practice example for
SILLIAC with the helvn of this scheme--perhaps even before

tackling the rest of the handboak .

corresponds to a division by two. For example,

0.0111 shifted left is 0.1110; 7/16 x 2 = 7/8
'0.1110 shifted right is 0.0111; 7/8 + 2 = 7/16
1.0010 shifted right is 1.1001; =7/8 + 2 = -7/16

1.0100 shifted left is 0.1000; =3/4 x 2 = 1/2 because
of overflow,

It should be noted that the sign digit is propagated when
the right arithmetical shift is executed. The SILLIAC
arithmetic unit has two shifting registers, each capable of

executing both left and right shifts. In addition toO
srithmetical shif+t, other variants of the shift operation are

available, These are described in the next chapter (q.v.).
Clearing to zero involves setting all digits of 2
number to zero; the corresponding arithmetic value 1s zero,.

2.3 THE SILLIAC ARITHMETIC UNIT. The structure of the
SILLIAC arithmetic unit is shown in PFigure 2.2, The arith-

metic unit is composed oI two shif ting registers, the
accunmulator A and the guotient register Q, and one non-

shifting register, the number regiSter R3. Also requlred

are the complement gate and the adder. The A and Q regilsters
are the only registers to which the programmer has direct
access; the number register 33 is used to hold temporarily
the numbers brought from the memory for arithmetic
operations, and its presence is of no moment to the
programmer. It is essential that the programmer be familiar
with the roles played by the i and Q registers 1n the
operations of arithmetic; many programming errors arise from
placing operands in or removing results from the wrong

reglister, The symbol R3 has been taken over from the engineering
description of the machine. In terms of this deseription,
R and K correspond to A and Q respectively.

=4

2.4 ADDITIONS (Order Type L). Before an addition
instruction begins, the augend (i,e. the number which is to
be added to) lies in the accumulator register A, During
execution of the addition instruction, the addend is trans-

ferred from a specified memory location to the number

register RB. The digits of R3 are then sensed through the
complement gate unchanged, so that the addend (i.e. the

number to be added) forms one of the inputs to the adder.

The augend 1n & 1s the second adder input. The adder forms

the sum which is transferred to the accumulator A,

replacing the augend. The gquotient register Q is undisturbed

by the addlition instruction.

FORY

- ADDER

COMPLEMENT
GATE

wianieils /alisiiasies.

Figure 2.2
The SILLIAC Arithmetic Unit

Two variants of addition are "hold add" and ''clear

add". The "hold add" instruction leaves the augeng_in.A
undisturbed until the sum is formed by the adder./ The
_"clear add! instruction 1s thus a transfer order which moves

e "clear aad™ 1nstruction clears A 1O Zero initiaTlly, thus

settlng the augend to zero.p-5

a number from a specified memory location to the accumulator
A,

2.5 SUBTRACTIONS (Order Type L). Subtraction in the
SILLI-C arithmetic unit is porformed by adding the complement
of the subtrahend (i.e. the number to be subtracted) to the
minuend (i.e. the number from which the subtrahend is to be
subtracted). Defore the subtract instruction begins, the

minuend lies in the accumulator A, and is used as one of the
two adder inputs., The subtrahend is brought from a specified
memory location to R3; its complement is formed by the

complement gate and is used as the second adder input. The
adder thus forms the difference by forming the sum of the
minuend znd the complement of the subtrahend. The adder
output is then transferred to the accumulator A, replacing
the milnuend.,

Either the "hold subtract" instruction or the ‘clear
subtract" instruction can be used by the programmer, For
the former instruction, the result of a previous operation
is left in the accumulaztor A as minuend; for the "clear

subtract”, the mimuend in A is set to zero, so that A
contains the negative of the number in a specifled memory
location when the operation has enaed,

2.6 ABSOLUTE VALUE ADDITION AND SUBTRACTION (Order
Typve L), It is possible to form the absolute value of the
addend (or subtrahend) after it hos been transferred from a
specified memory location 1o R3 and before it 1s added to the
augend (or subtracted from the minuend) in the accumulator.
Ordinarily the setting of the complement gate depends upon
whether the instruction is an addition or a subtraction; for
forming the absolute value of the number in RB, it 1s
necessary to sense the sign digit of R3 as well., For example

2=6

if the addition of the absolute value of & negative addend
is required, the sign digit of the addend in RS is sensed
indicating that a complementation is necessary. The add
instruction ordinarily does not recuire complementation;
the net effect of the sensing of the add instruction and
the R3 sign digit is that the complement gate 1s set to

form the complement of the addend.,

2,7 INCREWENT 4DD ORDERS (Order Type F). It was
noted in Section 2.1 that the operation of comblementation

is performed by first forming the digitwise complement of

RS

significant digital position of the adder, For the ordinary

the number held 1n and by then adding a wnilt in the least

addition and subtraction orders (order type L), the least
significant digit insertion occurs only when the complement

gate is set to form the digitwise complement. In the SILLIAC,
special increment add orders (type) are provided, Tor these

orders, the relationship between the setting oI the
complement gate and the insertion of the least significant
digit is reversed. Thus, the "clear increment add"
instruction sets the augend initially in A to zero and adds
the addend from R- 4o 2727 and places the result in A.
Conversely, the "clear increment supbtract" instruction sets

the minuend in A to zZero, replaces ones of the subtrahend
by zeros and replaces geros of the subtreahend by ones, and

transfoers the digitwise complement of the subtrahend thus
formed from the adder to A, Detailed descriptions oi further
orders of this type are given on page 3=-47.,

2.8 ADD FROM Q (Order Type —) AND INCREIENT ADD

FROM Q (Order Type +) INSTRUCTIONS. For the add from Q
ond increment =dd from Q instructions, the addend or sub-

trahend is transferred to the number register 33 from the

2="f

Q register, rsther than from a specified memory location,
Otherwise, the + and - order types are the same as the
corresponding F and L order types described in sections
2.4 through 2.7.

2,9 THE SHIFT ORDERS (Order Types 0,1)., Since the
right and left shift operations are fundamental in the

SILLI~C arithmetic unit, specific shift lnstructions are

provided for the progrommer, These shift instructions are

provided in several forms, viz,

(1) arithmetical shift (i.e. multiplication by
+
2“ﬂ) of the double length number contalned
in A and Q registers (see below),

(ii) arithmetical shift of A znd Q registers
separately,

(1ii) logical shift of the contents of A and Q taken
as an 80 digit number (i.e. a
displacement of the 80 digits to the right or
left), and

(iv) cyclic shift of the contents of A and Q taken
as an 80 digit number (i.e. same as (iii)
except that digits displaced beyond one end
of the A or Q register appear at the other

end of the A or Q register).

chifts or the last three forms will be described in the next
chapter., At this stage, the details of the arithmetical
shift will be giveﬁ in full 2s an introduction to the way
in which a double length product is stored in SILLIAC,

In arithmetical shift of the contents of A and L, all
digits in both A and Q, except the sign digit qy of Q are
shifted, A left shift (order type 0) of one digital

2-3

position replaces

201 B4y 8oy eeeees v ooy
and

Apr Gqs Los eeeerenecny
by

Aqy By a}, v oo ey
and

Ay 4o q3, ceeev a0 .y
The right shift (order type 1)-Of
replaces '

B B9 8oy ceeeaeieeng
and

Qrys Qg9 Qos eeeecencnay
by

85 By B4y cereceeeny
a10

qO’ a’39, q_-lg #llllllll-r

From the behaviour of

the

q38’ Q39 in Q

3, in A

397 4

O in Q.

quy
one digital position

a, in A

2371 2387 “39
q379 q38’ Q39 in Q

in A

2367 %370 238

X q36’ QB73 QBB in Q.

left and right shift we

see that we may consider the shifting to take place 1n a

single register,written AQ, o

f 79 digits consisting of A

followed by Q with qo deleted,

Thus, the left shitft replaces

ao’ 511 ’ ¢ s 2 0 ¢ 5 2 aBB’ 8‘39; q'li q_2’ """""" ’ q38’ q39
by '

a.], 8.:2, ¢ o 2 o 0 @ s 09 8-'39, CL!; q_2, q_3, ----- 0 e 9 q39’ O
while the right shif't replaces -

ao, a:,l 9 * 00 0 0 00 0y a38, 339; q1, q2, ------- ¢ 9 q38’ q_39
Dy '

ao, ao’ P o2 0 v v e 09 8437, a38; 8"39’ Q.‘i ’ ¢ & 0 s 0 0 * 93 Q..B'?! q38

=9

The number n of shifts can be specified in the address
digits of the shift order by the programmer. A left shift
of n digital positions replaces 1 (AQ) (i.e. the contents
of register AQ) by o1 (AQ). Similarly, a right shift of n
digitel positions replaces (AW) by 277 (AQ): n lies in
the range 1 < n < 03.

2,10 MULTIPLICATION (Order Type 7). Initially, the
multiplier lies in the quotiént register Q At the
beginning of the multiplication instruction the multiplicand
1s transferred from a location specified by the address of
the multiply order into the number register 333 where 17T
remains throughout the multiplication. The multiplication

then consists 0 a scquence of additions and shifts. More

precisely, a multiplier digit in 439 1s sensed. There

are two cases: (a) If q39 = 1, the multiplicand is added
to the partial product in A. A right shift in AQ follows
which halves the number in A and moves a new multiplier
digit into 13 a8 @élas trangferring a product digit from

a, to qq -

39
(b) If g3 = 0, only the right shift

occurs, which transfers 339 to q 4 and transfers the next most
significant digit of the multiplier into q39. After 39

right shifts have occurred, the sign digit of the multiplier
1s sensed. If the multiplier is positive, the multiplication
is complete, with a double precision product (sign digit and
78 non-sign digits) in AQ. For a negative multiplier x, the
process of 39 shifts and conditional additions constitutes

a multiplication of the multiplicand y by 1 + x (Equation 2.3)
to form a product y(1 + x) =y + xy. In this case the

SLLLIAC automatically subtracts the multiplicand y to produce

the correct product xy,

1 The contents of a register the location of which is n is
written as (n).

2-10

SUOT4ONILSUT OTHOWYRTIY FUTING SI4STIOY DVITIIS JO 050 1°2 9TABI

*s3.7TUS | X | x . . | I
Jo (u) a2qumu _ HHN\ m_ A _ _ g i 1ITYS pQMﬂmw L
£310345 S3THTP —_— S _ . m
SS94PIT “¢ X 2 X JoQUtlN b % m (1 - u) 0
Ovw, UOTSTO9dII aTqno - 930N ©°¢ |I3IT o7 |
LU LLGON] PUSPTATT _
| pepunoy | onptsed wm UOTSTOBIT 2Tqno(Homﬁbﬂﬂv SPTATd m
1 _ P
_ “ | ' quet ATdTaTON |
.mmﬂlm + AX _ % D G “__, ~NUMODV £ i | | PTOH ”W
R ﬂ . |
| p ey romup | Pos@onmw_ “wmﬁwmwmwmmw { ATdTsTOR |)
S s ﬂ 1 o3 1 _ _ | | 1 S3DUNO :
| ArLEns pepumoy | 2/l 03 398 papunoy
O ﬁOS@OH% m QQHHQ QOﬁPOﬁHP@ﬂH w
b N - i F L JO 3JIBLS

0 0% 388

I e

UOTSTPOII eTqnoQ 1 0 01 165

¢/t X0 0 0% 388 | N
9Q UWed PUBLIITH | poLsuUBYOL]

/L 20 0 0% 38€ 1< Susyou

- iy i

‘gousae IITC || ATBIFITQIY pUSNUTYH

vugad -

o0 W20 PULSLY ____ wns ATell1qIy |
— R —
I29STIoW | JI93STF9Y J918TFOY JI91.68T189Y ATOUIOW
NOTILONYULSNI {{HIAD

SHLON 0 w v y v peTIToadg

“ o o
eiminiepr et syl kvt r——_.

CNOTIIANOD TVNIL SNOIIIUNOD TVYILINI

waipliailie

211

weveral variations of the basic multiplication
procedure described in the previous paragraph are possible,
The initial contents of A may be either 0, 1/2, or some
guantity previously calculated, If we designate the initial
contents of 4 by a, the final double precision product in AQ
is Xy + 2""39 a, Where x and y are multiplier and multiplicand,
respectively. For a = 0, the instruction specified 1s "clear
multiply" and the result in AQ is the exact 78 digit signed
product xy. TFor a = 1/2, the instruction specified is
"roundoff multiply" and the result in A i1s a rounded 39
digit signed product, If a is arbitrary, the instruction
specified is "hold multiply", zand the result in AQ is
Xy + 2"39a; the gquantity a is thus added to the leas?
significaent part of the product in Q. In all multiplication
instructions the sign digilt a4 of the quotlent register 1g
set to zero,

For each of the three types of multiplication

instructions described in the previous paragraphs, tfour
additlonal variations can be specliied by the programmer,
Bither (n), - (n), I (n)l, or =! (n)l can be used as the
multiplicand, where (n) is the number transferred from

memory location n to the number register R3.

2,171 DIVISION (Order Type 6)., Initially, the double
precision dividend lies in AQ, The divisor is transferred

at the beginning of the division instruction from a memory
location specified by the address of the divide order to the

number register RB. For positive divisor and dividend, the
process is znglogous to elementary long division. The
divisor is subtracted from a partial remainder 1in A and the

sign of the difference (in the adder) is sensed, If the

difference is nezative, 0O 13 inserted in q39 as quotient
digit and AQ is doubled to form =z new partial remainder., If

2=12

the difference is positive, 1 is inserted in q39 as quotient
diglt and the difference in the adder is placed in A, and (AQ)
1s doubled to form a new partial remainder. At each doubling
of (4Q), Q. is shifted into SPA well as into 2 ag - Thus after
39 gteps A4 has the gign of the quotient. The dividend 1s used
as the 1nitial partial remainder; after 39 gquotient digits
have been generated, the process is complete. A similar
procedure is employed if divisor or dividend is negative or if
both are negative.

The SILLIAC division has the following properties:

(1) A rounded quotient1Q 1s always generated. '

The roundoif 1is achieved by setting d3g 7 1 in all
cases,

(2) The 39th partial remainder is left in A and is
called the residue r. The true remainder R cor-
responding to the rounded quotient is related to
r approximately as follows:

R=r + (2qo - 1)y, (2.4)
where y 1s the divisor and A 1s the gign
digit of the quotient. <Thus, if the quotient
1s positive

1= r -7,
and 1f the quotilent 1igs negative
R=r+ ¥
The equations given above for the true remainder are
valld 1f the absolute value of the ¢uotient 1is less

than one, and they yilela results in error by not more
than 2757, '

1. To simplify later formulae, the contents of Q are written
ir this section as Q.

2-13

(3)

(4)

2,12

The sign digit of the quotiént replaces

the least significant (78th) digit of the
double-precision dividend. One effect is that
the least significant digit of the residue

(a39) 1s the same as the sign digit of the
quotient’qo.
If we have a priori knowledge of the true

™%

value q of

the quotient (such as, for

example, a division of gy by y), the
relationship between the machine guotient
Q and the true quotient is

Q = J + 2~39(1 -q39)(1 — 2y0) (2.7)

where q39 18 the least significant digit

of q and Yo is the sign digit of the divisor
y. Bquation 2,7 1s essentially a description
dyg = 1, then

Q = g and the machine gquotient is the true

™y

quotient, If

of the division roundoff, If

d3g = O the nature of the
roundoff depends upon the sign of the divisor.
Suppose, for example, that g is 0,101; then Q
1s elther 0,101000,..001 or 0,100111,..111
depending upon whether the divisor was

positive or negative, respectively.

FRECISE CALCULATION OF THE DIVISION REMAINDER.
We define the remainder R in relation to a quotient Q, a

divisor y, and a dividend 4 by the equation

or

y + 2737 R = g,

R = 299 (g - Qy) . (2.8)

However, the exact relationship involving the SILLIAC

2=-14

s

residue r and including the replacement of the least

significant dividend digi® d78 by the quotient digilt da
1s '

Qy + 2739 [r +(205 = Dy] =@+ 270gy = agg). (2.9)

solving for R, we have
R=239a-0Qy) =1+ (205 - Ny + 277 (a5 - ag). (2.10)

Equation 2.10 glves the exact expression for the remainder
R which correspvonds to the machine guotient Q.

If the remainder R corresponding to the true quotient

g is desired, then R is defined as
R =27 (4 - qy) (2.11)

The value of R is found bysubstituting equation 2.7 in

equation 2.9 and solving for R, which ylelds
____ - | - - "'"39 " |
R =1+ |-2qO - Q.39 = (1 - q39)2y0_} y T 2 (078 = qO)-
o ¢ @ a0 (2.12)

2,13 THE DIVISION HANGUP, SPECIAL CiSES OF DIVISICN,
Cirveuits are incorporated in the LILLIAC for stopping the

SILLIAC if the quotient resulting from a division exceeds

one in absolute value. The sign digit of the quotient is

predictable from the signs of divisor znd dividend. The
sign digit of the quotient is calculated in the oS1LLIAC by
comparing the dividend and divisor arithmetically. Thus,

by sensing the sign digits of quotient, divisor, and
dividend, it is possible to detect the fact that the
quotient exceeds one in absolute value, and stop the SILLIAC,

The equations derived in Sections 2.10 and 2.11 are
valid only if the absolute value of the dividend 1s less
than the absolute value of the divisor, When absolute

2-15

values of dividend and divisor are equal, the SILLIAC

-39

and the divisor is positive. The quotient is +1 = 2

generates a quotient -1 + 2 if the dividend is negative

-39

if dividend and divisor are both negative. If the dividend
is positive and equal to the absolute value oif the divisor,
the SILLIAC will stop. If the divisor is -1, the SILLIAC
generates a quotient which is the digitwise complement of
the dividend, except for the gquotient roundoff.

2,14 MEMORY TO Q (Order Type 5), STORE FROM A (Order
Type 4) AND STORE FROM Q (Order Type N) INSTRUCTIONS.

Instructions are provided in the SILLIAC for transferring a

number from a specified memory location to the Q register,

and for transferring a2 number in A or Q to a specified memory
location. The former instruction can be used to transfer the
multiplier to Q before a multiplication; the latter
instructions are used to transfer a result from 4 or Q to

the memory,

2.15 ILLUSTRATIVE EX.MPLES, ¥

A, The Leapfrog I Division Test. in the Leapfrog 1
division test!the product Xy 1s formed and 1s then divided

by y. The sum of the quotient in Q and residue in A 1is
formed and stored. The sum of gquotient and residue 1s then
calculated independently and compared with the sum previously
stored,

The value of the machine quotient Q in the quotient
register after division of xy by y 1s given by equation
2.7 with g = x, Thus

- -39
Q-—X+2 (1-X39)(1-2y0)r

The value of the residue r left in the accumulator is found

from equation 2.12 by setting R = 0, x = q, and solving for
r: — . . . _ e A e e . .) el .
1., This is an sngineerin: tezt rooiine.
2-16

r = [§39 + (1 = x39)2y0 - 2x6] y + 2_39(3{O - x39y39).
The sum Q + r, after rearranging terms, 1s
Q +r =X - 2_39X39y39 - xo(y — 2_39) + (1 - XO)Y'+

(1 = x39)(2yy = Dy = 2777),

The independent calculation of Q + r thus consists of
forming x - 2"39x39y39 anid either adding y or (-y + 2
depending upon whether x is positive or negative; and
finally, 1if X3 is Q, adding or subtracting (y - 2“39)

-39)

depending upon the sign of y.

B, The "Double PFrecision" Division. 1t 1s sometimes
convenient to consider a single precision divisor y as
exect and form a "double precision' gquotient & + 2“39t
utilizing the double precision dividend d originally in AQ,

The procedure used 1s as follows:

., Form d4/y, yielding s + 539

. Shift right, forming r/2 in A and s/2 in Q.

. Form r/24 v leaving T in Q and a residue u in A,

. ASsemble s + 2"39t by setting to (the sign digit
of T) to zero, inserting'3/2 in A and shifting

-39,

in Q and r + 2 0 in A,

- U | Qe

left once,

The precision of s + 2"39t can then be calculated as

follows:
Step 1 yields s and r such that (by equation 2.9)

L

_ -78
= d + 2 (SO— d78),

(s + 2"39)y + ™37 [} EPREE Sg ¥ (2sO - 1)y
or .
Sy -+ 2_39(r + ZSOy) = d = 2"78 d78‘ (2.13)

Step 3 ylelds

Ty + 2"39 rﬁ + (2tO - 1)#] = r/2 + 2_78to (2.14)

The following substitutions are made:
(a) Sqg = tys since the sign of r/2 is the same as the sign
of d.

(b) From step 4, t = 2(T + so) or T = 1/2t - Sq

Substituting in equation 2.14 and solving for r, we
have

r = (t - 28,)y + >-38 lu + (284 = Nyl - o~ g

O O°

Substitution of the value for r in equation 2.13

ylields B) .
Sy + =3 [kt - 2so)y + 284y | + =11 1y +(280 - 1)yl

=116 _ =73

We thus have

-38

= -
(s + 2“39t)y + 2"78 [fu +-2(250 - 1)y + d78 - SQJ = d,

It can be shown that u + (2sy - 1)yl so that the quantity
within square brackets 1s less than 3 in sbsolute value. We
conclude that the quotient s + 2""’39
than 2779,

The program for forming 2 "double precision" quotient

¥t 18 1n error by not more

from a double precision dividend and an exact single
precision divisor is given in words 57 to 66 of library
routine A4 entitled, "1,7 rrecision Floating Decimal®, A
major difficulty encountered is the formation of r/2 from

r (Step 2 above), for r may be as large as 2y and may there-
for exceed range. 1t is therefore necessary to set the

sign digit of r/2 to that of the original dividend d.

2,16 INTEGER OPERATIONS. It is sometimes desirable

2~18

to use integers for computations in the SILLIAC., Suppose

we have an integer-aIStored in the memory oI arithmetic
unit. In terms of the formulation of previous sectlons,

we would store 2"393, where a lles in the range -2395 ac-239.
If we wish to add or subtract two integers a and b, no.
difficulty is encountered, for 2”37 ix =39y = 2f39(a i.b)
indicating that the correct sum or difference lies in A ’
after the instruction is performed, Multiplication of two
integers a, b yields (2"39a)(2"39p) = 2"78~ab. The product
ab lies in AQ and is in the ranée -2781& 2b ¢'278. If the
programmer scales all quantities so that the product remains
in the range ~239< ab & 257, then the 40 digit signed
product can be transferred to A by a left shift of 39
digital positions., It should be noted that the sign digit
of Q is set to zero during the multiplication so that for
positive products, (Q) = ab, if 0 £ ab**—’- 239. '

' Division of integers presents certain difficulties. An
example is given here of a method of dividing a positive
dividend a by & positive divisor b to yield a gquotient f
and remeinder g, ' |

~ The steps are as follows: , .

(1) Place the dividend 2-788, in AQ,. 0 £a L 277,

(2) shift left one digital position, leaving Z2a
in AQ with gq.o = O,

(3) divide by 2"%%b, leaving (2f + 1)2""39 in Q
and (22)273% in A, 0 < b < 2739,

(4) shift right one digital position, leaving
>=39¢ in Q and 2"39g in A,

It can be proved that bf +'g = a by substitution of the
appropriate quantities in equation 2.9, as follows:

(27 + 1)2739(2=3%) + 2739]273%24) - 2"39b] = 2~78(24q)

2-.19

which yields
2“78(2bf + b+ 2¢g - b) = 2"78(2a) or bf + g = a,

The ranges of f and g are 0 « £ <« 238 and O & g 238.

2,17 SUNMMARY, In the SILLIAC arithmetic unit are two
registers, A and Q, which are directly accessible to the
programmer, A single arithmetic order of a program utilizes
the 1nitial numerical operands in A, in Q, =z2nd in a specified
memory location, and transforms these quantities to produce

desired results which are left in the registers. The

programmer must know where the operands are initially
located and where the results are to be found. The functions
of the registers for the operations of arithmetic are
indicated in Table 2.1.

The SILLIAC has a fixed point arithmetic unit; the
binary point is fixed so that any number x used in

computation must lie in the range -1&€ x &£ 1. The programmer
must ensure that all guantities remain within this range
during & computation., The sign of a numerical quantity is

N

indicated by the leftmost of

the 40 binary digits stored
in a register or a memory location, The sign digit is O

for a positive number, 1 for a negative number,

=20

CHAPTER 3
THE ORDER CODE

In carrying out & complete calculation, the SILLIAC

extracts from its high-speed store and executes one at &
time a sequence of orders, each of which calls for one or
another of the elementary operations that the machlne can
perform, Before they can be s0 used the orders must be
entered into the machine's main high-speed store, For this
purpose the orders are coded in the manner set out in this
chapter. The machine 13 designed so that any storage
location in the memory may be used either for orders or for
numbers, the only distinction belng that the control must be
instructed properly so that orders and numbers will be treated
appropriately.,

Already in Chapter 2 the wvarious operations that SILLIAC

can carry out upon numbers have been briefly described, These
operations are not in themselves sufficient for the make up of
e. complete pracitical program for a given calculation. In
addition the followling types of operation are provided:

(a) operations for the input of information from
puniched paper tape, and for the output of
information on to punched paper tape;

(b) transfer-of-control operations, for controlling
the sequence in which the wvarious parts of a
complete program are carried out;

(¢) address-modification operations for assisting

in the organisation of repetitive loops within
& program;

(d) null orders;

(e) stop orders,

Explanatory notes on these several types of operation
are included in this chapter. In addition the SILLIAC's

3-1

complete repertoire includes a set of operations agsocliated
with the use of its magnetic tape backing store; for an
explanation of these operations the reader is referred 10

Chapter 12.
In the final pages of this chapter there is given first

the complete 1list of all possible orders that can be used,
together with the operations that they specify, and finally
an abbreviated reference list of the more commonly used

orders,.

3.1 THE MAKEUP OF ORDERS. An order for a digital
computer consists, in general, of a function part to say

what to do, and one or more address parts to say where 1O
find the quantities to be used in carrying out the operation,
and where to put the result, In general any aritnmetical
operation has two operands and a result, LI all of these
were to be located in the store, three address parts might
be used in a single order to specify the locations, A
machine using such a code would be said to have a three-
address order code. The SILLIAC however would carry out such
an operation in three separate orders, each one having one
address only associated with it, Such a code is known as a
one-address order code, The single address part in an order
specifying an arithmetical operation for the SILLIAC is used
to locate one of the operands; the other 0perand and the resul®t
are always to be found in one or the other of the tTwo reglsters
(A and Q)'provided in the arithmetic unit of the machine,

In a SILLIAC order eight binary digits (or "hits") are
used for the function part, and since the main store has 1024
locations, a further ten binary digits (1024 = 210) are
required for the address part, The function digits are
placed on the left, and the address digits on the right; 1n

3=z

between are a further two digits which are at present unused1
but which would be used should the size of the store ever be
increased to 4096 (=212) locations., A complete order 1s thus
spread over 20 digits, and accordingly two such orders, called

an order pair, are packed into one 40-digit storage location
in the manner shown in Fig, 3.1,

8-DIGIT 10-DIGIT 8-DIGIT 10-DIGIT

FUNCTION ADDRESS FUNCTION ADDRESS
LEFT-HAND ORDER RIGHT-HAND ORDER
DIGITS O=19 DIGITS 2039
Figure 3.1

Order Pair Makeup

The eight function digits of an order, for convenilence
in writing, are split into two groups of four, and each
ocroup of four is represented by a single base-16 {sexadecimal)
digit. Thus each function is coded as two sexadecimal digits.,
The sexadecimal number system as used with SILLIAC, uses the
decimal digits O, 1,...,9 for the first ten digits, and the
symbols + (or K), - {(or S), N,J,F,L for 10,11,12,13,14,15,

As an example of an order pair, let us consider the
following 40 binary digits:

1111010100000001110101000000000000000110

When divided into function and address digits, these
digits look like this:

T Non-zero digits 1n these positions Will have no effect

at present, However, 1f the store is extended, this will
no longer be true.

3=3

LEFT-HAND ORDER RIGHT-HAND ORDER
1111 0101 00 0000011101 0100 0000 00 0000000110
FUNCTION ADDRESS FUNCTION ~ ADDRESS

The left hand function is made up of the two 4-digit
numbers 1111 0101 which are the sexadecimal digits L5, The
left-hand address is interpreted as an integer which may

range from O to 1023 in decimal notation, or from O to 3LL
in sexadecimal notation.
In sexadecimal notation the left-hand address is 1d

which corresponds to the decimal number 29, Thus the left
hand order 1is L501J where the O has been supplied so that
21l 20 binary digits (including the two unused digits) are
accounted for. (We could have set the unused digits to 1's
and used N rather than 0 if we had wished,)

Similarly the right-hand order is 40006, and we have,
in sexadecimal notation, the order pair

L501Jd 400006,

This order pair says: "Copy the contents of storage locatlion
01Jd into the accunmulator; store the accumulator contents at
storage location 006,"

It would be gulte 1lnconvenlent 1f one always had to
write addresses in sexadecinmal form, snd, 1n fact, this 1s
not necessary if there 1s first placed in the machine a set
of orders (a "routine") which will cause it to read program
tape with addresses in decimal form, and convert them to
sexadecimal (i.e. binary) form for use inside the machine,
Routines of this type are available for the SILLIAC, The
simplest of these are called Decimal Order Input noutines,
The use of one of these is explained in Chapter 5,

3.2 INPUT AND OUTPUT ORDERS, On the paper tape used
as an input and output medium for SILLIAC, a punched hole

=4

1s used to represent the binary digit 1, and the absence

of a hole the binary digit 0, There is space across the
tape ror five punching positions, and therefore each row

of holes or '"character" on the tape can represent any
number from 00000 to 11111, or O to 31 in decimal notation,
For full details of the tape code the reader is referred
to Chapter 9., Here it 1s sufficient to point out that for
the representation of numerical information, whether in

decimal or sexadecimal form, four punching positions are

sufficient. Accordingly there is provided in the SILLIAC
one set of input and output orders which are concerned

solely with 4-digit characters (i.e. sexadecimal characters,
referred to as 4~level characters) having no hole punched in
the fifth position on the tape. These are orders of type 8,

In order to 1nput or output 5-digit characters, which
may 1lnclude & hole i1n the fifth position, a second set of
input=-output orders 1is provided. This second set of orders
1is used 1n general for handling non-numerical information
including, in particular, teleprinter control characters

such as space, line-feed, carriage-return etc. These are
orders of type 9,

An output order of type 8 can punch only 4-level
characters on the output tape - it can never punch a hole
in the fifth position. An input order of type 8 will read
only 4-level characters from the input tape -- any character
with a hole punched in the fifth position is ignored. An
output order of type 9 can punch 4- and 5-level characters,
the actual character punched depending upon the detailed
specification of the order., Similarly an input order of
type 9 can read 4- or 5-level characters from the input tape,

It 1s frequently desirable to input or outputmOre than
one tape character by means of a single SILLIAC order. This

3=5

has been made possible by maeking use of the operation of

shifting in the A and Q registers of the machine., (See
Chapter 2.) It should be noted that the shifting which
occurs during input and output orders is always of the
non-arithmetic variety (i,e., all 80 digits of A and Q are

shifted, with no special treatment of the sign digits) s
further logical shifting is used for input orders, and cyclic

shifting for output'orders. The shifting 1s to the left 1in

the first (numerical) type of input and output mentioned

above, and to the right in the second.(B-level)type of input
and output. '

Input orders of both types input information into the
arithmetic unit; output orders of type 8 output information
from the arithmetic unit, but the characters output by

orders of type 9 do not come from the arithmetic unit -
instead they are completely specified by the address part of
the order itself, '

3.3 EXECUTION OF ORDERS. In the course of 1ts
operation the SILLIAC reads out orders from the store and
places them a palir at a time, ready for execution,ln the
ORDER REGISTER, The content of the order register is
displayed on lights across the bottom of the machine,

The program is begun with a particular order chosen
by the programmer, Let us suppose that it is the left-hand
order at location 10;_ (We shall refer to addresses in
decimal notation,) The machine's control will put into the
order register the order pair from location 10, Then, until
it encounters an order which varies the sequencing, the
machine will follow a fixed patterm in executing orders, It
will carry out the left-hand, and then the right-hand order of
the pair in the order register, Then it will read %the

3=6

order pair from location 11 into the order register and
again execute the left- and right-hand orders., It will
continue to read out and execute order pairs from successive
storage locations until one of two things occurs:

(a) one of the orders brought out stops the ma.chine,
or (b) one of the orders brought out says "bring the
next order pair from storage location so-and-so",

The second kind of order (b) is called a control transfer
order, It permits the programmer to change the sequencing of

orders and provides the flexibility required for 1iterative
processes, It works in the following way.

Let us suppose that after the machine has executed the
left-hand order at location 17, the programmer wishes to move
to a sequence of orders beginning, say, with the right-hand
order at location 35, Then the right-hand order at location
17 will say "Transfer control to the right-hand order at

location 35", The execution of this order will consist of
arranging that the next order pair be brought from location 35,
and that the left-hand order be skipped. Having carried out
the right-hand order in the order register, the control will
bring out the next order pair from location 36 and proceed in
the usugl way.

A control transfer order may be itself either a left-hand
or a right-hand order. If it is the former the right-hand
member of its pair will be skipped out, and the machine will
proceed with either the left- or right-hand order of the new
order pair, as determined by the control transfer order,

Control transfer orders may be eilther unconditional

transfer orders, or conditional transfer orders. The
unconditional kind (orders of type 2) have just been described.

3=

The conditional transfer orders do the same thing provided

+hat o certain condition is satisfied in the machine. I the
condition is not satisfied the machine ignores the control

transfer order and goes straight on to the next order in

seguence,

In the SILLIAC there are two sets of conditional transfer
orders, and each set has 11s own condition for determining
whether the transfer should be performed or ignored. In the
first set (orders 30, 32, 34, 36) the condition 1s the sign of
the number in the accumulator, If this number 1s positive or
zero (i,e, 1f the diglt a; is a 0) the transfer will be performed,
put if negative (i.e, if 2. is a 1) the transfer will be ignored.
In the example used above, if the right-hand order at location
17 had been a conditional order of this type, then 1I Tne
sccumulator had held zero or a positive number the next order
executed would have been the right-hand order at location 35,

I1f, however, the accumulator had held a negative number, the

next order executed would have neen the left hand order at

location 18,

In the other set of conditional orders (31,33,35,37) the
state of the overflow indicator determines whether the control
transfer is to be performed or notw. The machine contalins an
indicator which is set to 1ndlcate overflow1 whenever overflow
occurs. This may e in addition or subtraciion, or in
left-shift or in one unusual case of multiplication, namely
that in which -1 is multiplied by -1 with the accumulator
initially positive or zero. The indicator 1s cleared tO
U —

V overflow is said to occur 1f the result of an operation, x,
is such that x3»1 or x ¢ =1.

3-8

cancel any indication of overflow by any order which 1nvolves
clearing the accumulator to zero, and by any order whlch
involves right shifting (that 1s to say right shift, multipli-
cation and in.ut, outbtput and layback orders ol tType). An

order calling for transfer of control conditionally upon no
overflow will be ignored if the indicator is set to indlcate
overflow. '

A further facility provided in connection with control
transfer orders is that, if desired, the machine may ue

caused to stop before executing any transfer of control. The
machine may then be restarted manually by means of a switch oun
the control panel. for the urovision of tiiis stop facility
every controltransfer order has TWwo forms. Oune foru of each
order will cause the machine to proceed without interruption
in the manner described above, while the other form of the order
can cause a stop. A conditional control transier order
of the stopping type causes a stop only when the condition ior
transfer of control is satisfied. The stop facility may be
disabled by setting a switeh on the control panel to = position
labelled IGNORE. When the switch is on tiils position the two
forms of order just described become identicel - neither
causes a stop.

The location in the store from which the next order
pair will be brought is determined by a counter located 1n
the control unit of the machine, and called the ORD&R COUNTER.
The address in this counter is advanced by one limediately

after each order pair is brousght out into the order reglster.

The manner in which a control transfer is produced during the
evecution of =& control transfer order, is thus siwply by

(

These contents

changing the contents of the order counter.
are displayed on lights, in sexadecimal form, on a panel Just
above the control panel of the machine.

3=9

3.4 NODIFICATION OF ADDRHOSES. A comwon feature of
computer programs 1s thalt some orders in t.ie Jsrogram have

t0o be executed a number of timnnes. but with o different

/

aadress each time. For exam.le, the addaress may recuire

TO be 1ncreased b, one each time the order is executed
so that the order may refer in succession to the several

numbers of a list stored in successive storage locations.

This situation can be met, without special facilities,
slaply by bringing taie order concerned out into the
arlithmetic unit, addling one to its address, aznd writing
1t back 1nto the store ready for the next time it is to

te used. +Lthis procedure 1is, however, rather clumsy if., as

-

a program several orders

usual, there are in a section o:
all reyulring slamllar alteratios of their addresses. Most
computers 1ncluae some special facllity for simplifying
the procedure in these cases,

p—

In thhe S1LLIAC this special facility for modifying

addresses takes the form of two svecial orders

called indexing orders 3- and 3L. The effect of these

orders 1s to cause an index number to be added to (3L) or

subtracted from (3~) the address of the next following
order; this change t0 the address is made only in the control
sectlon of the machine without changing the order in the

store. The address of the indexing order specifies the
location of the index number, and the index nunber itself
1s the number contained in the right hand address position

of the specified store location.
Quppose for example that storage location 10 contains

the number 15 1in its right-hand address part, and then

3-10

consider the two successive orders
' 3L 10
L4 25

These might be members of the same pair, or, ecually well,
might be the right-hand member of one pair followed by the
left-hand member of the next. By itself the order L4 25
would cause the contents of location 25 to be added 1into
the accumulator: but when preceded by 3L 10, it is the
contents of storage location 40 (=25+15) that will be added
into the accumulator, since location 10 contains 15 in the
right-hand address part. It should be noted that the addition
of the numbers 25 and 15 occcurs only transiently during the
execution of the order. <1he order L4 25, as it stands in
the store of the machine, is left ¢uite unaltered.

The addition, orsuﬁ%&ction, of an 1ndex number O
an order by an indexing order affects only the address part
of the order; it cannot alter the function digits. Thus,
if the index number 100 is subtracted from the order L4 50
by an indexing order the result will be interpreted as L4 974
for | | '

974 = 50 - 100 + 1024
= 150 - 100] Modulo 2'7.

Indexing orders may be used to modify the addresses of
all orders except those mentioned in the next paragraph.
For example they may be used to'vary the effective address
of a control transfer order and to vary the number of shifts
in a shift order or input/output order of type 8. An indexing
order may even be used to vary the address of another indexing
order,

An iwportant restriction own the use of indexing orders
is that in no circumstances should one be used to precede a

3 - 11

magnetic tape order. To do so will cause ma, 1lfunctioning of
the megnetic tape equipment. Another exceptlonal case occurs
in connection with output orders of type 9; for detmlls the
reader is referred to the detailed description of indexing
orders later in this chapter.

3.5 NULL ORDERS The grouping of SILLIAC orders 1nto
pairs sometimes causes minor inconvenience TO the programmer.
Some aspects of the available orders, and certaln conventions
used in programming, will sometimes make it necessary that
certein orders should appear as left-hand orders rather than

right-hand, or vice versa. To fulfil these recuirements 1%
will sometimes be necessary to use a waste order--one that

simply fills in a gap without doing any harm. To have

' available, for use in such cases a special null order --one
which simply sends the SILLIAC on to the next order without
any other action--1is hardly anecessity but it 13 &
convenience, and such orders have been provided in SILLIAC.
The SILLIAC orders 39 and 3J are both null orders and
may be used whenever required in a program except 1n between
an indexing order and the order whose address 1t 1s intended
to modify. An expert programmer may use one ol them even
there if he attends carefully to the details of these
orders as set out later in this chapter. '
3.6 STOP ORDERS To be able to stop the SILLIAC at
the end of a calculatiorn is of course very necessary, and
there is no lack of orders for doing this. Mainly for
engineering reasons, all orders the second sexadecimal
function digit of which is 8, +, N, or F, will stop the machilne.
Out of this total of 64 stop orders, one, namely OF is thatv
normally used to stop the machine at the end of a calculation.
Orders with second function digit 8, 4+, N, or F stop

3-12

SILLIAC without having any effect on the content of the
arithmetic register or the memory. After vLelng stopped
by one of these orders SILLIAC can be restarted by operating
the white switch on the control panel, and when restarted
proceeds with the orders following the stop order.

3.7 ORDER TYPES AND VARIANTS. With two sexadecimal
function digits, the total number of code combinations for

rooresenting orders is 16 x 16 = 256. However, &s mentioned
above, 64 of these merely stop the machine, and of the
remainder only about 150 represent distinct, usable orders.
This figure of 150 contains many that are but rarely used,
and the general programmer can manage willtn & much smaller
vocabulary, For reference purposes it is necessary that
this manual snhould contain the complete list and this 1s
civen 1ln the rollowlng pages.

The two sexadecimal function digits of an order give
the order type and the order variant. We shall relfer 1o
them as T- and V~digits, respectively. In the example L4
cited earlier the T—digit is L which denotes addition; the
V-digit is 4 which denotes one of the variants of the

addition type of order. The order types are given 1n

Teble 3.1. In orders of each type tlie address digilts have

2 particular meaning:; this is set out in Table 3.Z2.

co 3 Oy U1 B

o BLE S B Qo2

Order Type
Left Shift

Right Shift

Unconditional Control Transfer

(Conditional Control Transt

(Address Modification
(Null orders
(A) to Store

Store to Q

Divide

Multiply

(Magnetic Tape

(Input /Output

.

Lape

(lizgnetic
(5-1evel Input/Output
Increment ada from Q
Add from Q

(Q)to Store

Collate 1in Q
Increment Add

Add

Table 3.1
Crder Types

-3

el

T-V-
ﬁigits

ORDER TYPE

Operation

Shift

Control
Transfer

Lladexing

Null

A to Store

otore to Q
Divide
Multiply
Input /Output

Kecord

Rewind (full
word order)

Record Bilock
No. (full
word order)

5=level input
H5=level
output
Playbvack
Search (£full
word order)
Add from Q
Q@ to Store
Collate in Q

Add

MEANING OF ADDRESS

L+

Numpber of shifts (interpreted

modulo 64).
Location of next order pair.

Location of index number.

No significance.

Locatlion a2t which storage will
OCCUTY .

Location of word read into Q.

Location of divisor.

Location of multiplicand.

Determines number of characters
input or output, and number of
shifts (interpreted modulo 64).

ngineering significance only -
must be 5H.

L.H. address determines which
megnetic tape will be rewound.
R.H. address has no significance.
L.H, address determines which tape
.2nd which direction of motion,
R.H, address (12 digits) contains

Block No, to be recorded.
Determines no. of characters read
(interpreted modulo 64).
Determines character punched and
no. of times it is to be punched.
Determines which magnetic tape and
which airection of motion.

L.H, address determines which tape
and which direction of motion.
R.H. address (12 digits) contains
Block No. to be searched for.

No gsignificance.,

Location at which storage will
occur.

Location of word to be collated

- with (Q).

Location of addend.

Table 3.2

Meaning of Address Digits

3-15

Let us now cousider the variants obtained by selecting
various values of the V-digit. The sexadecimal ¥~digit 1is
made up of four binmary digits V3, V4, V2, and V1 and there
1s a degree of regularity in the significance of these digits
which helps considerably in remembering the various orders.

V1 and V8 Digits

(a) In all orders except type 3 and magnetic tape

control orders, the condition V1 = 1 will cause the accumulator

to be cleared to zero before the operation specified Ly the
order 1s carried out; 1if V1 = O A will not be cleared.
Thus an odd V-digit means that A will be cleared first.

(b) With the same exceptions as above, the condition
Vi =1, V8 = 1 will cause the accumulator to be first
cleared and then set to contain 1/2 at the start of the
order. Thus an odd V-digit greater than 8 means that 1/2
is placed in A first.

(c) Without any exceptions the condition V1 = 0,
V8 =1 (i.e. V=8, +, N, or F) will cause the machine to
stop. '

(d) In type 3 orders V3 = O gives conditional transfer
of control orders; V8 = 1 gives ihdexing end null orders.

The determining condition in conditicnal transiers is the
O, and the overflow indicator 1if

accumulator sign if V1
Vvl = 1,

V2 and V4 Digits
The V2 and V4 digits affect orders in the manner set
out in Table 3.3.

3-16

-]
AJd
C2
—
O
S
<}
N

TYPE ; EFFPECT OF V4 Ve - REF.

Arithmetical Shif+t

(AQ) as one long
number
(A) and (Q)separatel;

0,1 —t
|] Logical Shift O Noncyclic
y l Cyclic
—_—]
2,30 {0 Transfer to right- O S>top 1if switch on
to 37 kmmd order OBEY
| Ifransfer to left-
hdnd order l Do not stop
O | Preserve indezing N
] Cancel indexing full order
38 to
3L QO Subtract index : Tndexinge order {
1 | Add index) ;
? No effect otore full word
4,N .

otore right-
hand address
otore left-

‘hand address

otore address only

No effect

Must be 1

Input
Output '

Pla - back or record
(half word orders)
Ltape control opera-
tions(full word O
orders) l

Tyt =4 O Subtract O - Number
F,L | Add 1 i Absolute Value

3-17

In the detailed statement of the order code, which now

follows, the following notation is used: -

A The accumulator register

Q The multiplier-cuotient reglster.

ar,qr 0 < rg 39, digits of A and : for the
sign digit r = O.

AQ , The 79 binary digit double register formed
from A and ¢ by omitting ‘e

(R) Contents of register R.

(n) Contents of storage location n.

When it is desired to refer to the contents cf a
register R both before and after a gilven operation, the
initinl content will be written (R) and the final content
(R) .

Tt should be noted that the statement which follows 1s
intended to be definitive. That 1s to say, relevant side
cffects are stated for completeness: theseare not always
relevant to the main purpose of the orders, but may occur as
a by-product of the engineering deslgn of the machilne.
1T they are regarded as harmless, no actlon has been taken
to preyvent them; however, it 1s essential that the programuer

ahould know of thelir existence.

CVn Left Shift OVn

The nuwber n is interpreted modulo 64: 1if, =0
interpreted, n = 0, the machine will stop;, if not, carry
out n times in each case the shift operation described

below, for n = 1.

Values of V. Variant

0 Arithmetical left shift of (AQ): that is
to say, if n = 1, replace the initlal
contents
aoa;l 5 & o » a388..39 ' L'LOCL'] ® o o o {_138{139

ol A and Q Dby:

CPEPERER a39q1 ‘ Golp e« q390.

l Clear A, then same as 0.

D Arithmetical left shift of (4) and (Q)

separately:; +that is to say, if n = 1
replace the initial contents of A andQ by:

¢ 0
f

8485 .. a390 G4Qn e - 4ag

3 Clear A, then same as <2,
4 . " Logical left shift of the 00 digits 1in A
and Q: that is to say, 1if n = 1 replace

the initial contents of A and by:

A48 .o es B354 ' q1q2—....q390
5 Clear A, then same 2s 4.
6 Cyclic left shift of the 80 digits in
A and Q: that is to say, 1if n = 1, replace

the initial contents of A and () by:

3480000 BagUg GqGQp -+ ¢ Q3g3g
! Clear A, then same as 0.
8,+,N,F Stop, '

9,~,J,L Make (A) 1/2, then same as 0,2,4,6,respectively.

\

3=19

NOTES

(1) The overflow indicator will be reset, so as to cancel
the indication of any previous overflow, simultaneously with
setting (4) = 0 or 1/2.

(2) If at any time during the execution of any left shift
order, the digit a0 changes value, the overflow indicator

will be set.
(3) The order OF is conventionally used for the final stop

at the end c¢cf a program.

1Vn Right Shift 1Vn
Ihe number n is interpreted modulo 64 1f, sO

interpreted, n = 0, the machine will stop: 1f not, carry

out n times in each case, the shift operation describped

below, for n = 1.

Values of V Variant
0 | Arithmetical right shift of (AQ): that is
to say, if n = 1 replace the initial
contents
aoa1--.. 338a39 l q0q1--u; q35q39
of A and Q Dby:
aoaoa1.... a37a38 'ﬁ qoa39q1q2.ﬂ,. q37q38
Clear A, then same a2s 0.
D Arithmetical right shift of (4) and (Q)

separately; that is to say, if n =]
replace the initial contents of A and Q by:

aoaoa1.... 337338 l Lo4pGq e . q37q38ﬂ
3 Clear A, then same as Z.
4 Logical right shift of the 80 digits in A

and Q: that is to say. 1f n = 1 replace
the initial contents of A ana by:

ana1 .o e s 8‘378‘38 ‘ _8,39(.10&:_{1 e oo q37q38,
5 Clear A, then same as 4.
6 Cyclic right shift of the 80 digits

in A and Q: +that is to say, i1f n = 1
replace the initial contents of A and Q by:
v, Qﬂﬂ;‘eﬂxmé,q39a0a1 . oo &137i38 ' a?)gqoq1 REENCEL EEY-E
8,+ ,N,F Stop. _
9,-,J,L Meke (A) = 1/2, then same as 0,2,4,6,
respectively.

{]

3-21

NOTES

(1) All right shift orders will reset the overflow
indicator so as to cancel the indication of any previous

overflow.
(2) For convenience, 10n can be said to operate on (AQ)

(i.e. q, is unaffected), 12n on (A) and (Q) and 14n and
16n on (A/Q).

These three agbbreviations serve to describe the treatment of
Aq and the "splitting"of the A and Q registers.

3=22

2Vn Unconditional Control Transfer 2V 1

Bring the next order pair from storage location n
and start with the left-hand or right-hand order, stopping
beforehand or not, according to the value of V.

Values of V Variant
O Stop. Upon starting with the blackswitch

the first order performed will e the
right-hand order at location n. I1f the
black switch is set at IGNORE, the machine
will proceed with the order without
stopplng.

2 Transfer control to the right-hand order
at location n.

Same as O, except take left-hand order.
Same as 2, except take left-hand order.
5,7 Clear A, then same as 0,2 4,0 respectively.
, N, B otop .

J, L Make (4) = 1/2, then same as 0,2,4,6

respectively.

NOTES

(1) The overflow indicator will be reset, so as to cancel the
indication of any previous overflow, simultaneously with setting
(A) = C or 1/2,

(2) If, after the machine has stopped on a stop-transfer-of-
control order, it is started with the white instead of the black
switch, the transfer of control is not performed. Instead, the
machine proceeds with the next order in sequence, or 1f the

3=23

stop-transfer-of-control order is a right-hand order trans-
ferring control to a right-hand order, the machine proceeds

with the right-hand order of the next order pair in numerical
sequence.

3=-24

3Vn

Values of V

0,2,4,6

153,5,1

8,+,N,F

Conditional Control Transfer ' IV n

Address Modification
Null Orders

Variant

1T (A) }0 proceed as in the corresponding

2Vn order. If (A) € 0 go on to the next
order in seguence. '

If the overflow indicator is not set to

indicate overflow, proceed 1n the same
manner as 20,22,24,26 respectively. If the
overflow indicator is get, g0 on TotThe

next order in sequence.,

Information on gsettingand resetting af the

overflow indicator is glven under the
heading of each order type concerned.
Generally speaking the indicator will be set
wheun overflow occurs in any addition, sub--
traction, left shift or multiplication, and
will be reset so as to cancel any previous
indication of overflow in any order which
commences by setting (A) =0 or 1/2, and by
any order which involves right shifting
i.e. right shift, some ord«rs of type 9 and
nultiplication.

STOp

Go on to the next order. I1f a 39 order ,
follows 35 or 3L the effect of the 35 or 3L
will be preserved until the next followlng
order.

Subtract from the address of the next order,

3=25

Values of V Variant

- (cont.) during its execution and without altering
it in the store, the contents of the right-
hand addréss part of location n.
A 3. order may be used in front of ary order
except a magnetic tape order. Note however,
that if used in front of a 92 order the
address of the latter will bve modified in
so far as the number of shifts, and therefore
the number of characters, 1s concerned but
the character punched will not be altered.

J Ge on to the next order. If a 3J order
follows a 3- or 3L order the effect of the
3- or 3L will be cancelled.

L Same as 3- except that addition is carried
out instead of subtraction.

4Vn A to Store 4Vn

Values of V Variants
0,4 Copy (A) into location n.
1,5 | Clear A. then clear location n.
2 Copy the right-hand address digits of (A)
into the corresponding position iu location n.
3 Clear A. thew clear the righi~hand address
diglits in location n.
6 Copy the left-hand address digits of (4)
. into the corresponding position in location n.
! Clear A, then clear the left-hand address
diglts in location n.
8+ N,F Stop. '
9,J Replace (4) and (n) by 1/2.

= Replace (4) by 1/2 and address digits of
right-hand order at n by zero.

L Replace (4) by 1/2 and address digits of
left-hand order at n by zero.

NOT ES

(1) The overflow indicator will be reset, so as to cancel

the indlicatlon of any previous overflow, in all orders that

2
commence by setting (A) = 0 or 1/2.

(2) Orders are read out from the store into the order

register for execution in pairs. Hence = type 4 order may
overwrlite 1tself in the store without this naving any effect on
the current execution of the order. Moreover if a left-hand 4V
order modifies its right-hand partner this will not have any

effect on the current execution of the rignt-hand order.

3-27

5V n Store to {
Copy (n) into Q

Values of V Variants
0,2,4,6 Order as above.
1.3,5,7 Clear A, then as above.
3,+,N,F Stop.
9, ~,d,L Set (A) = 1/2, theu as above.
NOTHES

(1) The overflow indicator will be reset, so as to cancel
the indication of any previous overflow, 1in all orders that

commence by setting (A) = 0 or 1/2.

3-28

S5V

6Vn Divide 6V n
Divide (AQ) by (n) and place the rounded-off guotlent

in Q, leaving a residue in A. The rounding-ofi

making q.. always equal to one. If {(n)l < {(A)}, or if

((n)] = %A)?__ 0, the result of the division will be incorrect

and the machine will stop with the indicator lamp "+ HANG-UP"

on. Refer to Chapter 2 for detzils of the residue.

consists of

Values of V Variants
0 Order as above.
3,7 Make (4) = O, then as azbove.
L,~ Make (A) = 1/2, then as above.
8.+ ,N,F St07p . '
O Gives correct result only 1if divisor and

dividend are both positive.

1,4,5,9,4 Give correct result only if divisor 1is
positive.
2 Gives correct result only if dividend 1s

positive.

NOTEDS

(1) The overflow indicator will be reset, so as to cancel
the indication of any previous overflow, in all orders that
commence by setting (4) = 0 or 1/2.

(2) A division order can never cause the overflow indicator
to be set to indicate overflow, even if division hang-up

OCCUurs.

TVn Multiply TVn

Make (AQ)' = (Q) x P(n) + 2_39(A)5 where P(n) is as listed
below, and (A) is either the original cpntents of A, or zero,

or one half, according to the value ol V.

Values of V Variants
O P(n) = -(n)
’! P(n) = -(n), (&)
2 P(n) = -{(n)]
3 P(n) = ={(n)j, (4)
4 P(n) = (u)
5 P(n) = (n) (4)
5 P(n) = {{n)| _
7 P(n) = | (0)] , (&)
O, s N, F Machine will stop.
9 P(n) = -(n), (4) = 1/2.
- P(n) = —i(n)‘, (4) = 1/2.
J P(n) = (n), (4) = 1/2.
L P(n) = {(n)], (&) = 1/2.
NOTES

(1) The last four variants give a rounded-off product 1m A.

(2) The overflow indicator will be reset, so as to cancel

the indication of any previous overflow, at the start of any
multiplication order. At the end of tThe multiplication the
overflow indicator will be set in one case only, namely
multiplication of -1 by -1 with (4) initially positive or zero..

3—30

8Vn 4-Tevel Input/Output 8V

V= 031 52$3
8391'5‘9""

Read a specified number of 4-level characters from the
input tape into A, or from A to the outpul tape or printer
according to the settin. of the output switch. The address n
is interpreted modulo 64, and, so interpreted, must not be

zero; 1if n is zero the machine will sTop.

Values of V Variant
Q Shift all digits of A and of @ n places

left, introducing zeros on the right of
both A and §, and discarding digits shifted

out from the 2 and Ao positions. After
cach complete group of four shifts replace
a36,a37,a38,339 by the binary digits of

the next 4-level character on the input tape.
th -

Characters having the 5 evel punched will
be skipped over without being read. LI n is
an exact multinle of 4, the number of
characters read will be n/4. If n 1s not

an exact multiple of 4, the number of
characters read will be (u-k)/4 where k = 1,
2 or 3. In this case the order willie
terminated by 2 set of k shifts and thls

set of shifts will not be followed by any
input .

Clear A, then same as O.

Z Output the character determined by the diglts

3-31

SVn

Values of V Variant
2 ao,a1,a2,a3; then carry out a cyclic left
(contd.) snift of Tthe digits of A and Q, exactly

8Vn

as in an 06 order, of four places or such
smaller number of places as will brin:s the
total left shift to n places. Repeat

until n shifts have been performed znd (n+k)/4
characters have been output, where k = 0 1,

2, or 3 as recuired to make (n+k)/4 integral.

2 Clear £, then same as 2
8 ;i Stop.
- Make (A) = 1/2 then same as 0, 2 respectively.
NOTE

(1) Refer to left shift orders (type 0) for effect of
these input /output orders on the overflow indicator.

3-32

3Vn Magrnetic Tape Orders 8Vn

These orders will not be operative until the magnetilc

tape equipment has been installed.

Values of V Variant
4 Record (Q) own tape, provided tiaat a tape

has been starited in the record mode by means

of ann 8L order. The address n (mod. 64)

must be 5. In the process of transferring

(Q) to the tapeecuipment for recording, the
digits of A and @ undergo a 5S5-place logical
left-shift exactly as in an 04 order.

If, at any time during the execution of the

five shifts the aigit A changes value, the
overflow indicator will be set.
5 Clear A, reset the overflow indicator, then

same 23 4.,

o)

Fast-rewind a selected magnetic tape.

= Hi4x where

)
x = 0,1,2 or 3 specifies the

;a.pe 1o be rewound.
—Piri-a—opdor -0oouPpies—a—Iinll wWord .o Q10 5o

at e = Vg p s H s W .- - i - . . s rlieil [

“/ - A A . » £ . .

i
i

4

A rewind ovperation will not commence until
any preceding search operation on any tape
unlit has been oompletedﬁ but once the rewind
is started, it goes on automatically 1n The
tape unit concerned, leaving the remalning

tape eguilpment free for use.

333

8Vn 8Vn

Values of V Variand®
7,N,T Stop.
J Set (4) = 1/2, reset the overflow indicator,

then same as 4. The left shift of 5 places

will leave the arithmetic registers 1in

exactly the same state as in an 85 order,
but the overflow indicator will be set To
indicate overtflow.

L This order, known as Record Block Number,

occuples a full word. On the left:
n = 64(x+y)

where x = 0,1,2 or 3 specifies the tape
reguired,

and vy = 0, or 8 specifies forward or
reverse, respectively.

On the right, the functiocn aigits have no

significance; the remaining 12 digits are

811 available to specify the blcck number.

The 8L order is used both to start and to

conclude & recording process.

The operation it carries out is dependent

upon'whethér or not the specified tape has

already Dbeen started and upon the sign digilt

of A.

(a) Recording not yet started.
If (A) is negative, SILLIAC will stop. If
(A) is positive or zero, start the specified

tape in the specified direction 1in the
record mode, and proceed to record a block-
beginning word labelled with the specified
block number. Go on to the left-hand order

3-34

8Vn 8V 1

Values of V Variliant
L(Cont.) of the next pair.

(b) Recording is in operation
IT (A) is negative go straight on to the

left-hand order of the next palr.

If (A) is positive or zero proceed to record
53 block-end word labelled with the specified
block number and stop the tape. Go on TO
the right-hand order of the next palr.
Hecording nay be disabled, by an appropriate

-

switch setting, for the protection oI

important tapes against overwriting 1n

error. 1f the tape selected has been SO

protected, an 8L order will cause SILLIAC
to stop.

9Vn 5=-Level Input-Output 9V n

Read a specified number of 5~level characters from the
input tape; or output a specified character a specified
pumber of times to the punch or printer depending on the
setting of the output switch.

Values of V Variant
0 Not normally used. A 90 crcder will give actlon

similar to & 91 order, but omitting the

initial clearing of A to zero. The result
of this is to give, upon the ilnput ol each
character, the logical disjunction ("OR")
of the digits on the tape and the digits 1in
the corresponding positions of (A) at the
instant of i1input.

] Normally used with address n = 4. 1In that case
the action is as follows: Clear A: eXecute

a 4-place logical right shift of the 30

digits in A and Q, exactly as 1n a 15 order:

replace the digits in positions 336,a379a38?a39,
by the digits from tihe four normally used

levels of the next character on the input tape;

replace the diglt a, by The digit from the

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>